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Evaluating eligibility criteria of oncology 
trials using real-world data and AI

Ruishan Liu1, Shemra Rizzo2, Samuel Whipple2, Navdeep Pal2, Arturo Lopez Pineda2, 
Michael Lu2, Brandon Arnieri2, Ying Lu3, William Capra2, Ryan Copping2 ✉ & James Zou1,3,4,5 ✉

There is a growing focus on making clinical trials more inclusive but the design of trial 
eligibility criteria remains challenging1–3. Here we systematically evaluate the effect of 
different eligibility criteria on cancer trial populations and outcomes with real-world 
data using the computational framework of Trial Pathfinder. We apply Trial Pathfinder 
to emulate completed trials of advanced non-small-cell lung cancer using data from a 
nationwide database of electronic health records comprising 61,094 patients with 
advanced non-small-cell lung cancer. Our analyses reveal that many common criteria, 
including exclusions based on several laboratory values, had a minimal effect on the 
trial hazard ratios. When we used a data-driven approach to broaden restrictive 
criteria, the pool of eligible patients more than doubled on average and the hazard 
ratio of the overall survival decreased by an average of 0.05. This suggests that many 
patients who were not eligible under the original trial criteria could potentially benefit 
from the treatments. We further support our findings through analyses of other types 
of cancer and patient-safety data from diverse clinical trials. Our data-driven 
methodology for evaluating eligibility criteria can facilitate the design of 
more-inclusive trials while maintaining safeguards for patient safety.

Overly restrictive, and sometimes poorly justified1, eligibility crite-
ria are a key barrier that leads to low enrolment in clinical trials2. For 
example, around 80% of patients with advanced non-small-cell lung 
cancer (aNSCLC) did not meet the criteria of the analysed trials3. As a 
result, 86% of clinical trials failed to complete their recruitment within 
the targeted time4. The US National Cancer Institute concluded that 
eligibility criteria arbitrarily eliminate patients and should be simpli-
fied and broadened5,6. The US Food and Drug Administration has also 
emphasized that certain populations are usually excluded from clinical 
trials without solid clinical justification. Restrictive trials do not fully 
capture the efficacy and safety of the drug in the populations that will 
use the drug after approval1.

There is therefore a great need to have faster trial accrual and better 
generalizability, with data-driven eligibility criteria7–10. However, how 
to broaden eligibility remains a major challenge. Even trials with similar 
mechanisms that target the same disease often use different eligibility 
criteria, possibly owing to legacy protocols. Some eligibility criteria are 
included to reduce the risks of severe toxicity adverse events, which is 
a critical consideration10. In an evaluation by the American Society of 
Clinical Oncology, 56% of surveyed clinicians agreed that some criteria 
are too stringent and harm the trial, but no agreement could be reached 
on the removal of specific criteria, given the available data9.

Data-driven algorithms combined with real-world data can poten-
tially improve several aspects of clinical trials11–13. Artificial intel-
ligence can screen patients that meet eligibility14–16, predict which 
patients are more likely to enrol in trials17,18 and extract features from 

electronic health records (EHRs)19–21. Several studies have introduced 
approaches to quantify the difference between the study samples of a 
clinical trial and the target population that can use the treatment22,23. 
Recent research also used EHR data to evaluate how different eligibil-
ity criteria can affect the number of adverse events associated with 
COVID-19 that are observed in the selected cohort24. Our study differs 
from these studies in that we focus on evaluating the effect of relaxing 
specific eligibility criteria on treatment efficacy and cohort size in a 
real-world population. The Flatiron Health database that we use has 
effectively been used to analyse outcomes of patients with lung cancer 
after immunotherapies25,26.

Overview of Trial Pathfinder
We developed Trial Pathfinder as a framework that integrates real-world 
data and systematically analyses the hazard ratio of the overall survival 
for cohorts that are defined by different eligibility criteria (Fig. 1). In 
the first step—trial emulation—we selected individuals in the real-world 
dataset who met the available eligibility criteria as originally published 
in the clinical trial protocol. The eligibility criteria were extracted from 
free text and encoded into programmatic logic statements (Meth-
ods). We assigned the selected patients to the treatment groups that 
were consistent with their treatment records in the Flatiron database. 
We used the inverse probability of treatment weighting to adjust for 
baseline confounding factors and to emulate randomization. We then 
performed survival analysis for the emulated trials using the hazard 
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ratio of overall survival as the outcome. The Trial Pathfinder emula-
tion framework makes it possible to systematically vary the eligibility 
criteria in silico and quantify how the hazard ratio of overall survival 
changes with different combinations of criteria.

Real-world data and trial emulation
This retrospective study used the Flatiron Health EHR-derived data-
base (https://flatiron.com/real-world-evidence), which includes 
de-identified data from approximately 280 cancer clinics in the USA27. 
Longitudinal de-identified patient-level data included structured and 
unstructured data curated from the EHRs. We focused on analysing 
aNSCLC trials because they have the largest number of patients in the 
Flatiron Health database, comprising 61,094 patients with aNSCLC. 
Starting from all of the phase-III aNSCLC trials on ClinicalTrials.gov 
(queried on 8 November 2019), we filtered for trials that had available 
trial protocols and had at least 250 patients in each arm in the Flatiron 
Health dataset who matched the description of the patients in the tri-
als. This resulted in 10 completed aNSCLC trials sponsored by diverse 
companies that we analysed using Trial Pathfinder (Extended Data Fig. 1 
and Extended Data Table 1). Four trials are for first-line treatment and 
six are for second-line treatment.

Using the Flatiron Health data, we encoded commonly used eligibility 
criteria based on patient characteristics, diagnoses, laboratory values, 
biomarkers and previous treatments (Supplementary Table 1). There 
is substantial heterogeneity in which eligibility criteria were used in 
each aNSCLC trial, even though they all have the same mechanism of 
action as checkpoint inhibitors (Extended Data Fig. 2). For example, 
one trial excluded patients on the basis of albumin and lymphocyte 
levels, whereas the other nine trials did not. This motivated us to inves-
tigate the influence that each inclusion or exclusion criterion had on 
the real-world population.

Effects of the eligibility criteria
For each aNSCLC trial, we first selected all of the patients with aNSCLC 
in the Flatiron Health database who have taken the treatment or control 
drugs in the corresponding line of therapy. On average, 5,167 patients 
were identified for each trial (Table 1). The hazard ratio of the overall 
survival was estimated with propensity scores to control for differences 
between groups (Extended Data Fig. 3). This analysis corresponds to 
the hypothetical setting in which we fully relax the eligibility criteria.

We next emulated each aNSCLC trial using all of the original protocol 
criteria that can be encoded in the Flatiron database. The number of 
patients in the Flatiron database who met all of the eligibility criteria of 
the trial, along with their emulation hazard ratio of the overall survival, 
is shown in Table 1. The emulation results are broadly consistent with 
those of the original randomized trials. On average, only 30% of the 
patients in the Flatiron database who have taken the drugs tested in the 
trial actually met the trial eligibility criteria. Moreover, across the trials, 
the hazard ratio of the full patient population is comparable to, and 
sometimes smaller than, the hazard ratio of the subset of the patients 
who met the eligibility criteria (Supplementary Table 2). This suggests 
that many patients who were excluded by the restrictive eligibility 
criteria can also potentially benefit from the treatment in the trial.

The above findings motivated us to quantify how each inclusion/
exclusion criterion affects the number of eligible patients and the trial 
outcome. The latter is particularly challenging because the effect of 
each inclusion/exclusion rule on the hazard ratio depends on which 
other inclusion/exclusion rules are used to select patients. To estimate 
this effect systematically, for each aNSCLC trial, we simulated thou-
sands of synthetic cohorts using the Flatiron database under different 
random combinations of inclusion/exclusion criteria and estimated the 
hazard ratio of the overall survival for each cohort. We then used the 
Shapley value28, an attribution method used in artificial intelligence, 
to summarize the influence of each criterion. The Shapley value is a 
weighted average of the effect on the hazard ratio of adding each cri-
terion to different sets of inclusion/exclusion rules (see Methods for 
details). In our setting, a Shapley value smaller than zero suggests that 
including the criterion improves the efficacy of the trial and decreases 
the hazard ratio.

Figure 2 shows the Shapley values for each eligibility criterion esti-
mated with an efficient Monte Carlo algorithm (Methods and Extended 
Data Fig. 4). Shapley values close to zero (shown in white) correspond 
to eligibility criteria that had no effect on the hazard ratio of the overall 
survival. Criteria with beneficial effects (that is, including the criterion 
would decrease the hazard ratio of the overall survival on average) are 
shown in blue and detrimental effects (that is, including the criterion 
would increase the hazard ratio of the overall survival on average) are 
shown in red. Figure 2 also shows the decrease in the number of eligible 
patients when each criterion was applied (see Supplementary Tables 3, 
4 for the exact numbers).

Our analysis suggests that several commonly used inclusion/exclu-
sion criteria do not substantially affect the hazard ratio of the overall 
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Fig. 1 | Trial Pathfinder workflow and applications. a, Trial Pathfinder takes 
as input the real-world dataset and the target trial protocol (treatments and 
eligibility criteria). It programmatically encodes the eligibility criteria and 
performs trial emulation using propensity score weighting. It then performs a 
survival analysis on the emulated treatment groups, and reports both the 
number of eligible patients and the resulting hazard ratio. b, Combining an 

importance analysis of the automated criteria with the Shapley value, Trial 
Pathfinder evaluates individual criteria and derives a data-driven set of criteria 
that expands the pool of eligible patients without reducing the effect size. This 
can guide the design of trials. ALK, anaplastic lymphoma kinase; ECOG, Eastern 
Cooperative Oncology Group; HR, hazard ratio; IPTW, inverse probability of 
treatment weighting; PDL1, programmed death ligand 1; RWD, real-world data.
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survival of a trial or potentially reduce the efficacy of the trial. These 
criteria include conditions analysed by laboratory tests (blood pres-
sure, albumin levels, counts of lymphocytes or neutrophils, or alanine 
aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate ami-
notransferase (AST) levels) and previous treatments (ALK, PDL1, EGFR 
and CYP34A therapies, systemic or antineoplastic therapies). These 
inclusion/exclusion criteria can be restrictive; for example, requiring 
the lymphocyte count to be greater than 500 per μl excludes 6.3% of 
the patients on average. Moreover, patients excluded by these criteria 
benefit from the treatments of the trial to a extent similar to that of 
patients who met the criteria, as reflected in a Shapley value close to 
zero (Fig. 2).

Relaxing trial eligibility criteria
The results above show that it is promising to explore the benefits and 
trade-offs of relaxing standard eligibility criteria. We investigate this by 
keeping for each trial only the subset of the criteria that Trial Pathfinder 
identified to decrease the hazard ratio of the trial (that is, with a Shapley 
value less than zero) and relax the remaining restrictions. We denote 
this subset the ‘data-driven criteria’ (Supplementary Table 5). The set 
of data-driven criteria removes nine inclusion/exclusion rules on aver-
age. The hazard ratio of the overall survival had an average reduction 
of 0.05 compared with using the full eligibility criteria, and the number 
of eligible patients increased from 1,553 to 3,209 on average, an 107% 
increase (Table 1 and Extended Data Fig. 5).

Relaxing restrictive eligibility criteria has the important benefit of 
making clinical trials more inclusive for diverse populations (Sup-
plementary Tables 6–8). The patients who would be excluded by the 
original trial criteria but would be eligible in the relaxed rules tend to 
include more women and more patients older than 75 years. Detailed 
comparisons of patient characteristics between the original trial cohort 
and our emulations are shown in Supplementary Tables 9–18.

Additional validations
We performed several analyses to support the robustness of our results. 
In addition to using overall survival as the end point, we repeated all of 
the analyses for each trial using progression-free survival (Extended 
Data Table 2). To assess the robustness of our findings in light of the 
recent shift towards immunotherapies, we ran an analysis in which the 
data-driven criteria were applied to patients who received treatment 
between February 2017 and February 2020 (Supplementary Table 19). 

To assess the representativeness of our findings, we stratified our 
patient populations on the basis of geographical regions in the USA 
and the types of insurance plan (Supplementary Tables 20–28). We also 
applied Trial Pathfinder to 9,439 patients with aNSCLC who received 
Foundation Medicine genomic tests (Supplementary Tables 29–31). The 
results of all of these analyses are consistent with our primary findings.

Our primary analyses focused on aNSCLC trials because this cancer 
type had the most patients in the Flatiron Health database. To investi-
gate the generalizability of Trial Pathfinder to other types of cancer, 
we identified three additional trials in colorectal cancer, advanced 
melanoma and metastatic breast cancer with available trial protocols 
that can be encoded in the Flatiron database (Supplementary Table 32). 
In all three types of cancer, we found that the original trial criteria were 
overly restrictive. The data-driven criteria selected by Trial Pathfinder 
substantially increased the patient population (53% increase on aver-
age) while achieving a lower hazard ratio of the overall survival than 
the original trial criteria (a decrease of 0.13 in the hazard ratio of the 
overall survival on average) (Extended Data Table 3 and Supplementary 
Table 33).

Broadening the thresholds of laboratory tests
To more directly assess the effects on safety when broadening eligi-
bility criteria, we analysed the follow-up and evaluation of toxicity 
for 22 completed Roche oncology trials, which combined comprised 
11,602 patients. We found substantial heterogeneity in the eligibility 
criteria across these trials (Supplementary Table 34). Even trials that 
targeted the same cancer, in the same phase, and that involved treat-
ments of similar mechanisms used a number of different thresholds 
of laboratory values to exclude patients. Across aNSCLC, advanced 
melanoma, metastatic breast cancer and follicular lymphoma, trials 
with more relaxed thresholds of laboratory values for eligibility did not 
have more treatment withdrawals due to adverse events than trials with 
more stringent eligibility thresholds (Supplementary Table 35). This 
supports our finding that we can potentially broaden several common 
laboratory-based eligibilities—levels of bilirubin, platelets, haemo-
globin and ALP—to align with successful trials that already use these 
relaxed thresholds without increasing the toxicity risks for the patients.

We further support our findings by analysing abstracted toxicity 
data in a cohort of 1,000 patients with aNSCLC from the Flatiron data-
base. No significant difference in their baseline laboratory values at the 
start of treatment were found when comparing patients who reported 
toxicity-related adverse events during the course of treatment with 

Table 1 | Comparisons of eligibility criteria

Trial name Original trial criteria Fully relaxed criteria Data-driven criteria

No. of criteria No. of patients HR No. of patients HR No. of criteria No. of patients HR

FLAURA 10 2,277 0.81 3,819 0.82 4 2,546 0.75

LUX8 11 129 0.65 1,350 0.81 5 141 0.58

Checkmate017 17 523 0.67 4,900 0.71 7 4,085 0.71

Checkmate057 19 792 0.75 4,900 0.71 9 2,594 0.66

Checkmate078 18 1,509 0.74 4,900 0.71 9 3,348 0.68

Keynote010 13 806 0.56 1,950 0.51 1 1,948 0.51

Keynote189 15 4,066 0.88 8,818 0.94 7 4,595 0.85

Keynote407 13 2,031 1.13 10,437 1.07 4 9,173 1.04

BEYOND 12 2,902 1.09 9,310 1.14 4 3,043 1.08

OAK 19 493 0.88 1,288 0.87 6 620 0.80

Average 15 1,553 0.82 5,167 0.83 6 3,209 0.77

The number of inclusion/exclusion criteria, the number of eligible patients and the hazard ratio of the overall survival of emulated aNSCLC trials with eligibility criteria under three scenarios: the 
original criteria used in the trial, fully relaxed criteria and data-driven criteria. The fully relaxed criteria correspond to evaluating the hazard ratio of the overall survival of all of the patients in the 
Flatiron database who took the treatments in the relevant line of therapy. The data-driven criteria were selected by Shapley values. HR, hazard ratio.
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patients who did not (Extended Data Fig. 6). This reinforces our finding 
that the broader eligibility thresholds for laboratory tests are feasible 
from a safety perspective. Furthermore, Extended Data Fig. 7 shows 
that relaxing the cut-off threshold for the levels of bilirubin, haemo-
globin, platelets and ALP within the range of thresholds used in trials 
(Supplementary Table 35) does not significantly increase the hazard 
ratio of the overall survival in the Flatiron database and can make trials 
more inclusive (Supplementary Tables 36, 37).

Discussion
Overly restrictive eligibility criteria limit the access of patients to poten-
tially beneficial treatments. Our findings suggest that it is particularly 
promising to standardize and potentially broaden several eligibility 
criteria based on cut-offs for bilirubin, platelets, haemoglobin and ALP 
values. Recent oncology trials often used different cut-off thresholds 
for these laboratory tests to exclude patients. We found that across 
different types of cancer, trials with more relaxed thresholds of labo-
ratory values for eligibility did not have more treatment withdrawals 
due to adverse events compared with trials with more stringent eli-
gibility thresholds. Together with our findings on the Flatiron data, 

this suggests that standardizing the eligibility criteria to align with 
successful trials within the same therapy class that used more relaxed 
laboratory thresholds could be a good approach to enhance inclusivity.

Because the real-world population can differ from the clinical trial 
samples, our study aim was not to replicate the original trial results using 
the Flatiron database. Instead, we investigated how varying the eligibil-
ity rules affects the proportion of the real-world population that would 
be eligible for the trial. Our data-driven evaluation of eligibility criteria 
should be interpreted as one factor among several that can assist clinical 
trial specialists in their designs. In each trial, there could be drug-specific 
nuances, and our hope is that by combining our recommendations with 
their expertise, trial designers can arrive at more-informed criteria. 
Currently, longitudinal real-world data with robust outcomes are more 
limited for diseases other than cancer, which can have more complex 
end points. There will be opportunities to extend this work outside of 
oncology as additional high-quality data become available.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Fig. 2 | Influences of individual eligibility rules. a, b, Shapley values of the 
hazard ratio of overall survival (a) and changes in the number of eligible 
patients (b) are shown across different aNSCLC trials and eligibility criteria.  
a, Red, inclusion of the criterion increases the hazard ratio; blue, the criterion 
decreases the hazard ratio when included, on average. b, The fraction of 

patients who would be excluded by each criterion in every trial is shown. 1L, 
first line of therapy; 2L, second line of therapy; CNS, central nervous system; Pt, 
platinum; WBC, white blood cell count. The ‘CNS metastasis exclude’ criterion 
means that patients with CNS metastases are excluded.
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Methods

Clinical trial curation
In this study, we focused on aNSCLC, because aNSCLC is a prevalent 
cancer type and has the largest number of patients in the Flatiron 
Health database. We systematically identified all of the aNSCLC trials 
that are available for our analysis. A total of 3,684 interventional clini-
cal trials of NSCLC were retrieved from the ClinicalTrials.gov website 
of the National Library of Medicine (queried on 8 November 2019). 
A systematic selection of trials was carried out using the following 
filters: (1) trials were interventional and only had two arms; (2) treat-
ments consisted of drugs or biologicals only; (3) the drugs selected in 
each arm are recommended for aNSCLC as listed on the NIH website 
(https://www.cancer.gov/about-cancer/treatment/drugs/lung); (4) at 
least 250 patients in each arm were found in the Flatiron Health dataset 
who match the description of the patients in the trials; (5) the trial was 
conducted in phase III; and (6) protocols were available. The final list 
of selected aNSCLC trials included FLAURA29, LUX830, Checkmate01731, 
Checkmate05732, Checkmate07833, Keynote01034, Keynote18935, Key-
note40736, BEYOND37 and OAK38. Detailed information on these trials 
can be found in Extended Data Table 1. To ensure the completeness of 
the trial criteria, we carefully extracted all of the eligibility rules directly 
from the original trial protocols rather than from ClinicalTrials.gov. 
The eligibility criteria were extracted from the original clinical trial 
protocol documents and the programmatic encoding of the criteria 
was verified by a team of experienced oncology data scientists and 
clinical trial specialists. Additional information about the encoding 
of the criteria is provided in the Supplementary Methods and Sup-
plementary Discussion. Trial Pathfinder is a flexible framework that 
can be applied to other clinical trials.

Flatiron Health dataset
The data that support the findings of this study have been obtained 
by Flatiron Health, a nationwide EHR-derived de-identified database 
containing 219,312 patients with cancer with an average of 2.6 years 
of follow-up. The Flatiron data leveraged in this study (the February 
2020 data cut) comes from a combination of EHR-derived data and 
external commercial and US Social Security Death Index data. The 
Flatiron Health database is considered one of the industry’s leading 
research databases in oncology owing to the rigorous data curation 
and abstraction processes as well as publications in which their efforts 
to validate outcomes are demonstrated. In previous validation stud-
ies in which the Flatiron mortality data are compared to data from 
the gold-standard National Death Index, the sensitivity of mortality 
capture in a population of patients with aNSCLC was shown to be 91%, 
and that the effect of the remaining missing deaths on survival analyses 
was minimal39,40. In addition to curation accuracy, the Flatiron data are 
harmonized and aggregated across approximately 280 cancer clinics 
across the country, which enables its data to be more representative 
than the EHRs of a single healthcare centre. The majority of patients 
in the database originate from community oncology settings; relative 
community/academic proportions may vary depending on the study 
cohort. Data provided to investigators was de-identified and subject to 
obligations to prevent re-identification and to protect the confidential-
ity of the patients. These de-identified data may be made available upon 
request, and are subject to a licence agreement with Flatiron Health; 
interested researchers can contact DataAccess@flatiron.com to deter-
mine licensing terms. Institutional Review Board approval with a waiver 
of informed consent was obtained before the study was conducted.

Flatiron Health takes a comprehensive approach to data curation, 
which involves the collection of both structured and unstructured data 
from the EHRs. Structured data points, such as laboratory test results, 
are harmonized across different EHRs and mapped into common termi-
nologies. Unstructured data processing, such as data that come from 
clinician notes or biomarker reports, leverages technology-enabled 

abstraction. Through this process, qualified abstractors extract key 
data points from unstructured documents and are aided by software 
that facilitates this process through organization, searching and surfac-
ing of key documents throughout the abstraction process. Flatiron’s 
network of abstractors includes certified tumour registrars, oncology 
nurses and oncology clinical researchers.

Patients in the Flatiron Health network were considered to be part of 
the aNSCLC real-world cohort if they were diagnosed with lung cancer 
(the ninth revision of the international classification of diseases (ICD-9) 
code 162.x; or the tenth revision of the international classification of 
diseases (ICD-10) code C34x or C39.9); had at least two documented 
clinical visits on or after 1 January 2011; had pathology consistent with 
NSCLC; and were diagnosed with stage IIIB, IIIC, IVA or IVB NSCLC 
on or after 1 January 2011, or diagnosed with early-stage NSCLC and 
subsequently developed recurrent or progressive disease on or after 
1 January 2011. Patients were excluded if there was a lack of relevant 
unstructured documents in the Flatiron Health database for review 
by the abstraction team.

A catalogue of the criteria that it was possible to emulate using the 
Flatiron Health database can be found in Supplementary Table 1. There 
are some criteria for which Flatiron Health does not currently abstract 
information from EHRs—for example, reproductive health, some prior 
co-morbidities, some previous treatments, imaging procedures and 
results—and these were not included in the present study. For those 
criteria that are available in the database, we also evaluated the per-
centage of missing ECOG and laboratory value information for each 
patient at the start of the first or second line of therapy (Supplementary 
Table 38). To closely mirror the actual trial screenings, we considered 
clinical measurements taken within a window from 30 days before to 
7 days after the start of the line of therapy40.

Data on adverse events
We further support our findings by analysing toxicity data for a 
real-world cohort of 1,000 patients with aNSCLC from the Flatiron 
database. These patients were randomly selected from the broader 
aNSCLC cohort based on receipt of anti-PD-1/PD-L1 therapy, and 
underwent additional data abstraction to determine the reasons for 
treatment discontinuation, including toxicity. In addition, we identi-
fied 22 Roche oncology trials with available clinical study reports, and 
extracted statistics from the study reports on the number of patients 
who withdrew from treatment owing to adverse events.

The Trial Pathfinder workflow
In the first step of Trial Pathfinder—trial emulation—we identified indi-
viduals in the real-world dataset who met the available eligibility criteria 
as originally published in the clinical trial protocol. The eligibility criteria 
were encoded as logic statements and were automatically applied by 
our workflow. More information on how the semi-structured free-text 
criteria in the clinical trial protocols were encoded into programmatic 
statements is provided in the Supplementary Methods. Patients with 
missing data points (for example, ECOG or laboratory values) in the cor-
responding criteria were not filtered by those criteria. We then assigned 
the selected patients to the treatment groups that were consistent with 
their treatment records in the database (for example, atezolizumab 
versus docetaxel). To emulate the randomization and blind assignment 
in the trials, we used inverse probability of treatment weighting (IPTW) 
to adjust for baseline confounding factors. Time zero was set to be the 
start of the corresponding line of therapy. Finally, we performed survival 
analysis for the emulated trials using the hazard ratio of the overall sur-
vival as the outcome. Each individual was followed until the occurrence 
of death or censored at the latest reported activity. Outcomes that occur 
after 27 months in the Flatiron database are considered censored in our 
analysis to match the original trial settings. The results are robust to the 
specific window lengths discussed here (Supplementary Table 39). The 
Trial Pathfinder open source code was written in Python version 3.6.

https://www.cancer.gov/about-cancer/treatment/drugs/lung


Trial Pathfinder trial emulation and survival analysis
To emulate the blind assignment and obtain unbiased estimates of 
treatment effects, we used IPTW to adjust for the baseline covariates. 
During the survival analysis, patient i is given the weight defined in 
equation (1), in which Zi is the indicator variable representing whether 
patient i is treated or not, with Zi = 1 indicating a treated case. The 
propensity score ei is defined in equation (2), in which Xi denotes the 
baseline covariates. We used a logistic regression model to estimate 
ei. In our experiments of aNSCLC, the covariates X were: age, gender, 
composite race or ethnicity, histology, smoking status, staging, ECOG 
and biomarker status, including ALK, EGFR, PDL1, ROS1, KRAS and 
BRAF. Adjustment by propensity score is effective in balancing all of 
the covariates between the synthetic treatment and control groups 
(Extended Data Fig. 3).

ω Z e Z e= / + (1 − )/(1 − ) (1)i i i i i

e Z X= Pr( = 1| ) (2)i i i

We further performed survival analysis on the emulated trials. For 
each patient, the index date or time zero, resembling the randomiza-
tion point in a clinical trial, was chosen to be the start date of the line 
of therapy of that trial (either first or second). This choice of time zero 
ensures that there is no immortal time bias41. Patients were followed 
until the occurrence of death, censoring those patients without a death 
event. The Cox proportional-hazards model was used to compute haz-
ard ratios and confidence intervals of overall survival. Survival curves 
were estimated with the Kaplan–Meier method.

Eligibility criteria evaluation with Shapley values
To evaluate the influence of an individual criterion we used the Shapley 
value, which is the average expected marginal contribution of adding 
one criterion to the hazard ratio after all possible combinations of 
criteria have been considered. The Shapley value has recently been 
proposed in machine learning as a principled approach to quantify 
the contribution of individual features and data28. The definition of 
the Shapley value of the ith criterion is given in equation (3), in which 
n is the total number of criteria and HR(S) indicates the hazard ratio 
computed when the criteria subset S is used to select patients. The 
sum in equation (3) is taken over all possible subsets S of the n original 
criteria (denoted as N for short) that did not contain i.

∪∑
i

S n S n S i S

Shapley value of the th criterion

= ( ! ( − − 1) ! / ! )(HR( { })–HR( )) (3)
S N i⊆ \{ }

The Shapley value of the ith criterion is a weighted average of the 
effect of adding this criterion to different subsets of inclusion/exclu-
sion criteria. The weights normalize for the number of possible sets 
that have the same cardinality and are required to satisfy the Shapley 
attribution properties.

Exhaustively computing the hazard ratios of overall survival for all 
possible subsets of criteria (order of n!) was computationally prohibi-
tive. Here we estimated the Shapley value by Monte Carlo sampling sub-
sets of criteria S. The Monte Carlo sampling gives an unbiased estimate 
of the Shapley value. Following the previously proposed algorithm42, 
we stop sampling when the Shapley estimate has converged (that is, 
when the standard error of the Monte Carlo mean is less than 0.001). 
In practice, convergence happened after a hundred iterations for each 
criterion. A few thousand Monte Carlo samples combined is sufficient 
for a trial with tens of criteria to evaluate. This makes Trial Pathfinder 
computationally efficient (Extended Data Fig. 4) and only needs around 
half an hour to run with a single CPU for one trial. For each trial, we aver-
aged its results evaluating on a different criteria set from the trials in the 

same line of therapy (either first or second). A Shapley value larger than 
zero indicates that the contribution of that criterion is to increase the 
hazard ratio on average. Conversely, a negative Shapley value means 
that the contribution of that criterion is to decrease the hazard ratio 
on average. Finally, Shapley values that are close to zero correspond 
to a criterion that does not affect the hazard ratio.

Trial Pathfinder reports the subset of criteria used by the original 
trial that have a Shapley value smaller than 0 as data-driven criteria. 
Once the data-driven subset of criteria was selected, Trial Pathfinder 
computed the number of eligible patients and the hazard ratio of the 
overall survival between the synthetic treatment and control arms.

Additional validation analyses
We stratified our 61,094 patients with aNSCLC from the Flatiron data-
base by their geography of residence as in the US census—Northeast 
(n = 11,777), Midwest (n = 8,895), South (n = 23,895) and West (n = 9,061). 
We then evaluated the inclusion/exclusion criteria selected by Trial 
Pathfinder for each of the 10 aNSCLC trials for patients from each geo-
graphical region separately (Supplementary Tables 22–25). We also 
stratified our aNSCLC cohort by their insurance plan as an additional 
robustness analysis—commercial health plans (n = 22,423), Medicare 
(n = 10,841) and the remaining patients (n = 22,361). We evaluated our 
previously selected inclusion/exclusion criteria for each of the 10 
aNSCLC trials for patients under the three types of insurance plans 
separately (Supplementary Tables 26–28). We used the nationwide 
(US-based) de-identified Flatiron Health-Foundation Medicine aNSCLC 
clinicogenomic database (FH-FMI CGDB) for further validation43. 
Genomic alterations were identified through comprehensive genomic 
profiling of more than 300 cancer-related genes on the next-generation 
sequencing-based FoundationOne panel of the FMI44. Retrospective 
longitudinal clinical data were derived from EHR data from clinics in the 
Flatiron network, consisting of patient-level structured and unstruc-
tured data, curated by technology-enabled abstraction, and were linked 
to genomic data derived from comprehensive genomic profiling tests of 
the FMI in the FH-FMI CGDB by de-identified and deterministic match-
ing43. To leverage the rich genomics information of FH-FMI CGDB, we 
added 17 additional genes to the adjustment of the covariates that 
have alterations in at least 1,000 patients (Supplementary Table 31). 
For each of the 10 aNSCLC trials, we applied the inclusion/exclusion 
criteria that Trial Pathfinder selected on the Flatiron data and used 
it to emulate a trial using the FH-FMI CGDB cohort (Supplementary 
Table 30). Progression is used as the end point and progression-free 
survival hazard ratios are computed.

Statistical analysis
We bootstrapped the cohorts to estimate the standard deviations for 
the Shapley values. The confidence intervals for the hazard ratios were 
estimated from the variance matrix of the coefficients in fitting the 
Cox proportional-hazards model. For the safety impact analysis on 22 
Roche oncology trials, we use two-sided P values from Fisher’s exact 
tests to measure the difference in the withdrawal ratio given two sets 
of trials (Supplementary Table 35). When analysing toxicity data, we 
use two-sided P values from two-tailed Student’s t-tests to evaluate 
whether there is a significant difference in the baseline laboratory 
values between two toxicity groups (Extended Data Fig. 6).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The Flatiron Health and the FH-FMI CGDB data used in this 
study were licensed from Flatiron Health (https://flatiron.com/
real-world-evidence/) and Foundation Medicine. These de-identified 

https://flatiron.com/real-world-evidence/
https://flatiron.com/real-world-evidence/
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data may be made available upon request; interested researchers can 
contact DataAccess@flatiron.com and cgdb-fmi@flatiron.com. Infor-
mation on the clinical studies can be found on clinicaltrials.gov and 
EUdraCT.

Code availability
The open source Python code for Trial Pathfinder is available on GitHub 
(https://github.com/RuishanLiu/TrialPathfinder).
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Extended Data Fig. 1 | Selection of aNSCLC clinical trials. Workflow 
implemented in a Python script to perform a systematic selection of trials 
using the six filters described in the Methods. Twenty clinical trials met the first 
five filters, but only six of them had a protocol that was publicly available either 
on ClinicalTrials.gov or as supplementary material in the associated 

publications. Additionally, four trials were included in the model that were 
suggested by subject matter experts at Roche. These four trials had not 
originally been identified by our systematic search owing to errors in their 
clinicaltrials.gov entries (for example, one trial was listed as having eight arms 
despite having only two).
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Extended Data Fig. 2 | Differential use of eligibility criteria. The trial and 
criteria grid shows which eligibility criteria are present in each aNSCLC trial 
(criteria coloured in yellow are included in the trial protocol). The trials are 

divided into first-line and second-line therapies, depending on their protocol 
design; the eligibility criteria are grouped into categories depending on the 
type of variable that is measured.



Extended Data Fig. 3 | Balance assessment for treatment and control 
groups. a–j, For each aNSCLC trial, we plot the standardized mean difference 
(SMD) for every patient covariate between the treatment and control cohorts 
generated from the Flatiron data. SMD values close to 0 indicate that the 

cohorts are balanced. The inverse propensity weighting used in our analysis 
(IPTW) effectively balances the cohort. ‘Raw’ corresponds to the unadjusted 
cohorts.
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Extended Data Fig. 4 | Convergence of the Shapley value for the bilirubin criterion. The x axis indicates the number of randomly generated subsets of criteria 
used for Shapley value computation.



Extended Data Fig. 5 | Example of the effect of relaxing the eligibility 
criteria. a–c, Survival curves, hazard ratios and the number of patients in trial 
Keynote189 when the eligibility criteria scenarios are: the original trial criteria 

(a), fully relaxed criteria (that is, all of the patients who took the relevant 
treatments) (b) and the data-driven criteria identified by Trial Pathfinder (c).
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Extended Data Fig. 6 | Comparison of patient baselines. a–e, Violin plots for 
the laboratory values of the patients at the start of treatment. We partition the 
sampled patients with aNSCLC from the Flatiron database into two groups 
depending on whether or not they had withdrawn from first-line aNSCLC 
treatments due to toxicity (82 patients with toxicity = true and 918 patients 

with toxicity = false). The violin plots show the distribution of each of the 
laboratory values at the start of the trial. There is no significant difference in 
the baseline laboratory values between patients who later withdrew from 
treatment due to toxicity and the patients who did not (unadjusted two-sided 
Student’s t-test; P > 0.2 for all five laboratory tests).



Extended Data Fig. 7 | Effects of varying laboratory cut-off values.  
a–d, Changes in the Shapley value of the hazard ratios of the overall survival for 
different laboratory values thresholds. The x axis corresponds to different 
values of the inclusion threshold for bilirubin (serum bilirubin less than 
threshold for inclusion) (a), platelets (platelet count larger than the threshold) 
(b), haemoglobin (whole-blood haemoglobin level less than the threshold) (c) 
and ALP (ALP concentration larger than the threshold) (d). Changing a 
threshold to the right on the x axis corresponds to more relaxed criteria that 

would include more patients. The thresholds used in the original trials are 
provided in the key and their Shapley values are set as the baseline 0. For most 
of the trials, relaxing the laboratory value thresholds would not significantly 
change the hazard ratio or would decrease the hazard ratio (that is, curve below 
0). The range of values shown for each laboratory test corresponds to the range 
of thresholds used in actual trials (Supplementary Table 35). In all of the panels, 
the error bars correspond to the bootstrap standard deviation and the centres 
correspond to the bootstrap mean of five replications.
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Extended Data Table 1 | Summary of investigated aNSCLC trials

Line of therapy (LoT); confidence interval (CI); first line of therapy (1L); second line of therapy (2L).



Extended Data Table 2 | Validation on progression-free survival hazard ratio

The number of inclusion and exclusion criteria, the number of eligible patients and the hazard ratio of progression-free survival with confidence interval of emulated aNSCLC trials with eligibil-
ity criteria under three scenarios: original criteria of the clinical trial, fully relaxed criteria and data-driven criteria learned from results of the hazard ratio of overall survival (same as in Table 1).
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Extended Data Table 3 | Analysis in other cancers

Eligibility criteria for colorectal cancer (CRC), advanced melanoma and metastatic breast cancer in three scenarios. The number of inclusion and exclusion criteria, the number of eligible 
patients and the hazard ratio of the overall survival with confidence interval of emulated aNSCLC trials with eligibility criteria under three scenarios: original criteria of the clinical trial, fully 
relaxed criteria and data-driven criteria.
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