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Abstract
Ensuring safety and providing timely conflict

alerts to small unmanned aircraft is important to their
integration into civil airspace. We propose several
algorithms for short-term conflict avoidance as part
of an automated traffic management system. The goal
is to balance aircraft safety and efficiency subject to
environmental and aircraft uncertainty. The proposed
controllers generate advisories for each aircraft to
follow, and are based on decomposing a large Markov
decision process and fusing their solutions. We sep-
arate the problem into pairwise encounters that are
solved offline. The solutions to these encounters are
then combined online to produce a locally optimal so-
lution using an iterative search technique. As a result,
the methods scale well and the global problem can
be solved efficiently. We demonstrate the controllers
by evaluating them against baseline algorithms in
simulation.

1. Introduction
Many important applications of small unmanned

aerial systems (UAS), ranging from goods delivery
to infrastructure surveillance, can be empowered by
flexible access to civil airspace. To enable safe and
efficient operations at low-altitude, NASA has been
leading the exploration of concepts and prototypes for
a largely automated UAS Traffic Management (UTM)
system [1]. While there are many important compo-
nents to the UTM, this paper focuses on automated
conflict avoidance because it is critical to ensuring
safety.

Designing a robust conflict avoidance system is
challenging for a variety of reasons. The UTM is
intended to handle many more aircraft in a more
restrictive and crowded airspace than conventional air
traffic management systems. There is uncertainty in
the current state due to imperfect sensor measure-
ments, and there is uncertainty in the future paths
of the aircraft due to variable pilot response, vehicle

performance, wind, etc. Determining the appropri-
ate trade-off between safety and efficiency is not
straightforward, and the system must also coordinate
complementary advisories among many aircraft.

Past approaches to conflict avoidance prob-
lems include mixed-integer programming and sequen-
tial convex programming by Schouwenaars, Valenti,
Feron, et al. [2], Mellinger, Kushleyev, and Ku-
mar [3], and Augugliaro, Schoellig, and D’Andrea
[4]. These approaches tend to work well for small
vehicle networks. Ong and Gerdes have explored
distributed convex optimization techniques to develop
an efficient and scalable algorithm called proximal
message passing [5]. Exploiting specific structures in
conflict resolution, Erzberger, Lauderdale, and Chu
propose a deterministic algorithm to choose feasible
trajectories for commercial aircraft [6], [7]. Airborne
Collision Avoidance System X (ACAS X) uses a
control policy derived from Markov decision process
(MDP) solution techniques and has been shown to
improve safety and operational efficiency over exist-
ing collision avoidance systems [8], [9]. The work by
Owen, Williams, and Mezhirov extends ACAS X to
UAS, but it does not coordinate horizontal maneuvers
[10]. Kuchar and Yang offers a comprehensive survey
of conflict avoidance methods up to the year 2000 in
[11].

The contributions of this paper are threefold.
First, we formulate the conflict resolution problem
as a stochastic problem in the form of a large
MDP and decompose it into computationally tractable
subproblems. Second, we propose a locally optimal
coordination scheme that is based on an iterative
method that combines subproblem solutions [12].
Third, we develop several variants of the algorithm
that permit solutions in real-time and demonstrate
their effectiveness over two baseline methods.

2. Markov Decision Process
In an MDP, an agent chooses action at at time

t after observing state st . The agent then receives



reward rt , and the state evolves probabilistically
based on the current state-action pair. The explicit
assumption that the next state only depends proba-
bilistically on the current state-action pair is referred
to as the Markov assumption. An MDP can be defined
by the tuple .S;A;T;R/, where S and A are the
sets of all possible states and actions, respectively,
T is a probabilistic transition function, and R is a
reward function. The probability of transitioning into
state s0 after taking action a from state s is denoted
T .s;a;s0/. The immediate reward received for taking
action a from state s is denoted R.s;a/.

While solving MDPs is an effective method for
determining actions for a single agent in stochastic en-
vironments, they can also be extended to cooperative
multi-agent domains. Multi-agent MDPs (MMDPs)
extend MDPs and allow for sequential decision-
making in a cooperative multi-agent system, and is
similar to the case where a centralized planner has
access to the system state. Similar to an MDP, an
MMDP can be defined by the tuple .S;A;T;R/. The
difference is that S and A are now the sets of all
possible joint states and actions, respectively, and that
T and R operate on elements from these sets.

To solve any MDP (or MMDP), we compute a
policy �? that, if followed, maximizes the expected
discounted sum of immediate rewards from any given
state. The optimal policy is related to the optimal
state-action utility function U ? .s;a/, which is the
expected utility when starting in state s, taking ac-
tion a, and then following actions dictated by �?.
In the literature, this is also called the state-action
value function. Mathematically, it obeys the Bellman
recursion
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where we define U ? .s/ D maxa2AU
? .s;a/. The

state-action utility function can be computed using
a dynamic programming algorithm called value iter-
ation. Beginning with an initial guess, this technique
iteratively updates (1) until the estimate converges.
The optimal policy, in turn, is given by

�? .s/D argmax
a2A

U ? .s;a/ : (2)

Because the number of states scale exponentially
with the number of agents, exact solutions may be
computationally intractable for problems with more

than just a few state variables or agents [13]. This
issue is referred to as the curse of dimensionality [14].

3. Short-term Conflict Avoidance
Our formulation focuses on horizontal or co-

altitude conflict resolution. Here, we have n aircraft
at risk of conflict between each other. Here, conflict is
defined as the loss of minimum separation, and a pair
of aircraft is considered at risk if it could experience
a conflict within a time frame of up to two minutes.
Loss of minimum separation, in turn, is defined as
the situation when two aircraft come closer than some
threshold distance.

A. Resolution Advisories
At each time step, the system issues a joint

advisory out of a finite set of bank angles cor-
responding to each aircraft’s action in the multi-
threat scenario. The joint advisory can be written as
� D .�1; : : : ;�n/. While the time period for a single
transition may be defined according to system needs,
we define it to be 5 s. This period corresponds to the
decision frequency of our system. These bank angles
are directly related to the turn radii of the aircraft
through the Dubin kinematic equations. These joint
advisories constitute the action set An. We define
A D f�20ı;�10ı;0ı;10ı;20ı;COCg. Here, positive
angles correspond to left banks and negative angles
to right banks. COC is a special clear-of-conflict
status that allows the aircraft to continue its trajectory
as usual. Conversely, all other actions correspond
to corrective advisories to be issued during conflict.
While the resolution of the decision period and bank
angles can be increased, shorter decision periods and
finer bank angle discretization increases the problem
complexity. Our simulation results also suggest that
they worked well for our problem (see Section 7).

B. Dynamic Model
The system is described by the set of state

variables of each aircraft. For the i th plane, of which
there are n in total, the state is si D .xi ;yi ; i ;vi /,
where xi and yi indicate the latitude and longitude,
 i indicates the heading and vi indicates the aircraft
groundspeed.

To account for a wide range of pilot responses
including aggressive over-reaction, we model the
aircraft banking response as Gaussian distributions.



We further assume that the time to reach a desired
bank angle is small compared to decision period and
thus allow the bank angle to change immediately
in response to an advisory. When the aircraft is in
conflict, the bank angle distribution is centered on
the resolution advisory with a standard deviation of
4ı. When the aircraft is clear of conflict, the aircraft
banks randomly based on a zero-mean Gaussian with
a standard deviation of 10ı.

The aircraft groundspeed is held constant be-
tween decision stages, and is modeled as a Gaussian
distribution centered on the aircraft’s reported speed
with a standard deviation of 2m=s. This simplification
is due to the observation that aircraft usually respond
slowly to sudden speed change inputs for short dura-
tions. The variation in aircraft speed captures random
effects like navigation errors, wind gusts, and other
trajectory perturbations. Slight delays in pilot reaction
is captured by a combination of speed and bank angle
variations.

As mentioned, the formulation uses Dubin’s
kinematic model to compute state transitions. The
model is described by

Px D v cos ; Py D v sin ; P D
g tan�
v

; (3)

where v is the speed and g is the gravitational
acceleration. The relative simplicity of this dynamic
model reduces the computation time required to solve
the problem and the risk of overfitting a more compli-
cated model. The latter is crucial, given the diversity
of unmanned aircraft.

C. Reward Function
The focus of our conflict avoidance system is to

balance the twin objectives of maximizing safety and
minimizing disruption. These objectives are captured
in a reward function composed of a sum of different
components. For safety, a conflict is defined when
aircraft come within a minimum separation distance
rmin D 500m in the horizontal plane. At any time t ,
the separation between two aircraft is denoted r .t/.
The minimum separation between the two aircraft
during each decision period T starting at time t is

r
sep
t Dminfr .�/ j � 2 Œt; tCT /g :

The reward function penalizes any decision that
brings any pair of aircraft to r sep

t < rmin by a constant
value. The function further penalizes the minimum

separation of any two aircraft by an exponentially de-
caying graph centered at 0 m to maximize separation
even in cases where conflict is unavoidable. To limit
disruption, advisories are penalized. The COC action
corresponds to a 0ı bank angle during reward com-
putation. The reward function for a decision period
starting at time t is written as

Rt .s;�/D��1Isep .s;�/��2 exp
�
r

sep
t .s;�/=rmin�

(4)
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T Icoc .�/ ; (5)

where Isep and Icoc are the indicator functions

Isep .s;�/D

�
1; r

sep
t .s;�/ < rmin

0; otherwise

.Icoc .�//i D

�
1; �i ¤ COC
0; otherwise:

For this algorithm, the weight parameters are �1 D

1000, �2 D 10, and �3 D 0:02. We balance between
corrective resolution advisory alerts and safety (prob-
ability of conflict) by tuning �4, and we set �4 D 10

unless otherwise stated. While this reward function
only captures basic preferences, a better function
can be found through expert preference elicitation
methods [15].

4. MDP Decomposition
As formulated in Section 3, computing the opti-

mal solution is impractical. We therefore decompose
the problem into pairwise encounter MDPs and fuse
the state-action utilities together [9], [16].

A. Pairwise Conflict Avoidance
Instead of tackling the problem as a full MMDP,

our approach first decomposes it into a set of
.1=2/n.n�1/ pairwise encounters.

1) Resolution advisories: As in the original
MMDP formulation, the system can issue one advi-
sory out of a finite set of bank angles corresponding
to turn radii for each aircraft at each time step. These
joint advisories constitute the action set A, which
follows the definition used in the MMDP.

2) Dynamic model: One may use the multi-
agent formulation presented in Section 3 with only
two aircraft. A better approach reduces the cardinality
of the state space and thus computational complexity
by replacing the absolute state variables of each
aircraft with a single set of relative state variables.



The speeds, however, are still absolute with respect
to the world.

The pilot response and dynamic models of the
aircraft is the same as in the original MMDP. Be-
cause we use relative states, however, appropriate
modifications to the equations of motion are required
to take rotating reference frames into account. To
compute the relative state transitions, (3) is used to
update the absolute aircraft states from the initial
configuration. We compute the intermediate states
xabs D xj �xi and yabs D yj �yi . The relative states
srel D

�
xrel;yrel; rel

�
for aircraft j with respect to i

can then be computed as follows.

 rel
D  j � i

xrel
D xabs cos rel

Cyabs sin rel

yrel
D�xabs sin rel

Cyabs cos rel

3) Reward function: The reward function for
the pairwise encounter is equivalent to an MMDP
formulation for two agents.

B. Offline Solution
The optimal policy specifies the target bank

angle to reach and hold for the 5 s time step between
decisions. States are mapped from the continuous
to the discrete domain using multilinear interpola-
tion, and transition probabilities are estimated us-
ing sigma-point sampling [17]. We use a set of
weighted values for bank angle � and speeds v1

and v2 for sigma-point sampling. For the transition
between states, the system has a 1=3 probability of
following the nominal bank angle and speeds. The
remaining 2=3 weight is uniformly distributed across
every other combination of

�
�� ;�v1

;�v2

�
, where

�� 2 f�4ı;0ı;4ıg for a corrective resolution advisory,
�� 2 f�10ı;0ı;10ıg for a clear-of-conflict status, and
�v1j2

2 f�2m=s;0m=s;2m=sg. These values come
from the Gaussian distributions over the bank angle
response and aircraft speed in Section 3.

These techniques were effective in providing a
discrete approximation to an MDP with a continu-
ous state space in [8], [9]. The state space for the
relative variable formulation is discretized using a
multidimensional grid. Table I shows the result of the
discretization, which has approximately 2.4 million
discrete states. While the discretization can be made
finer at the expense of additional computation and

storage, this level of discretization was acceptable in
numerical experiments.

Table I. Discretization Scheme

Variable Minimum Maximum Number of values

x;y �3000 m 3000 m 51
 0ı 360ı 37
v1;v2 10 m=s 20 m=s 5

Dynamic programming is used to compute the
utility function U ?. This technique is called value it-
eration, and solves the discretized problem optimally.
The basic idea of this algorithm is to iteratively solve
the Bellman recursion (1) from an initial guess. One
modification is that the original transition function is
replaced by QT , the approximate transition function
resulting from sigma-point sampling and multilinear
interpolation. In the case of partial state observability,
a heuristic called QMDP can be used to produce
a solution that performs well in many real-world
scenarios where there are few information-gathering
actions [18], [19].

The solver was implemented in Julia, a high-
level dynamic programming language for technical
computing [20]. The solution was generated using
20 2.30 GHz Intel Xeon processor cores with 125
GB RAM. The procedure took under an hour to
complete, with most of the work done in computing
state transition probabilities. After this offline com-
putation, the policy is consulted during operation in
the form of a U ? .s;a/ look-up table to select the best
advisory to issue at each time step. The computation
to extract the best action from the table using (2) takes
microseconds.

Figure 1 shows the policy for two encounter
scenarios with the ownship aircraft state .x;y; ;v/D
.0m;0m;0ı;10m=s/ in the form of heat maps. In
Figure 1a, the intruder is traveling towards the own-
ship aircraft with 180ı relative heading at 10 m=s,
and in Figure 1b, the intruder is traveling towards the
ownship aircraft with 240ı relative heading at 10 m=s.
The heat maps show the action that would be issued
for both aircraft when the intruder is at the plotted
.x;y/ coordinates with the indicated heading. Positive
and negative values on the colorbars indicate left and
right banks, respectively. The clear-of-conflict status
actions are colored pale-blue to avoid confusion with
the 0ı bank advisory.
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(b) 240ı Angled Intruder Approach

Figure 1. Pairwise Encounter MDP Policy

In general, the solution agrees well with intu-
ition. For instance, consider the scenario where the in-
truder aircraft is at .x;y/D .1000m;500m/ heading
straight towards the ownship aircraft. Here, Figure 1a
shows that the optimal joint policy is for the ownship
and intruder aircraft to both bank right. This combi-
nation of actions ensures that both aircraft turn away
from one another. It is also important to note that
the algorithm issues advisories between a set decision
time period from a fixed set of advisories, which

results in some surprising behavior. For instance, an
interesting feature is the slight “indent” in the left
inset of Figure 1a at roughly .x;y/D .1500m;0m/,
which indicates that the ownship aircraft should wait
to determine which way the intruder might turn before
responding with a bank action. In Figure 1b the
encounter scenario is identical except the intruder is
flying at a relative heading of 240ı. The nonzero
banking region is rotated to prevent the intruder from
flying into the exclusion region of the ownship aircraft



from the latter’s left. For both heading angles, once
both aircraft experience loss of minimum separation
(500 m) the system immediately advises both aircraft
to bank more aggressively to resolve the conflict
quickly.

5. Multi-threat Coordination
To coordinate multiple aircraft in conflict, this

section uses MMDP decomposition, utility fusion,
and online rewards to produce an approximate utility
function for the global MMDP. As the search space
for the approximate utility function can still be large
(on the order of jAjn for n aircraft), we derive a set of
centralized and distributed algorithms that solves the
traffic management problem using a search heuristic.

A. Utility Fusion
To obtain a global MMDP solution from the

pairwise subproblems, we need a measure of how
good each individual pairwise solutions are when
combined with other pairwise encounters. Utility fu-
sion combines state-action values from subproblems
to obtain a proxy to the full problem’s state-action
value function [8], [16]. It computes the utility U ?

ij for
the pairwise encounter between two different aircraft
i and j , assuming that the optimal policy for that
encounter is followed in the future. For a set of
pairwise encounter MDP states and actions

s D .s1; : : : ; sn/ ; aD .a1; : : : ;an/ ;

the best action for each aircraft can be found via
a proxy global utility function U ? that results from
fusion function f :

U ? .s;a/D f
�˚
U ?

ij

�
si ; sj ;ai ;aj

�
j

i;j 2 f1; : : : ;ng ; i < j g/ :

Note that U ?
ij can include online rewards.

Our algorithm employs two fusion strategies.
The first strategy defines f to be a summation:

f
�˚
U ?

ij

	�
D

X
U ?

ij ;

which is also called the max-sum strategy (“max”
here refers to us taking the argmax of the joint
action space). Defining f in this fashion leads to
counting nonzero bank angle costs multiple times,
which would be reflected in the state-action utilities
for each pairwise encounter. Since the system incurs
the action cost multiple times when in reality the

system can only alert once at each time step, the
system is encouraged to delay issuing nonzero bank
angles. This preference for later banking may be un-
desirable as it limits the amount of options available
to each aircraft the closer they are to loss of minimum
separation and can lead to more aggressive maneuvers
at later times.

The second strategy defines f to be the mini-
mum state-action utility over all pairwise encounters:

f
�˚
U ?

ij

	�
DminU ?

ij :

This method is also referred to as the max-min
strategy. As opposed to the max-sum strategy, the
max-min strategy avoids accumulating the cost of
alerting for each pairwise encounter. This method also
tends to provide more conservative policies in the
sense that earlier banking is preferred.

To extract the joint policy, we compute

a?
D argmax

a2An

U ? .s;a/

with a search heuristic that produces locally optimal
solutions.

B. Online Rewards
The MMDP utility function is based only on the

states and actions of the pairwise subproblems. Online
rewards are introduced to incorporate preference for
actions that are based on information not modeled
in the subproblems and thus favor certain actions
in real-time without introducing new state variables.
Specifically, online rewards are used in our algo-
rithm for coordinating joint aircraft maneuvers with
fewer messages and thus less communication. During
operation, the expected rewards calculated from the
offline look-up table are added to the online rewards
associated with that action.

C. Search Heuristic
As mentioned, the search space for joint policies

for the approximate global utility function is on
the order of jAjn and can thus be large for large
numbers of aircraft n. To alleviate this issue, our
technique finds a solution where each agent’s policy
is the best response to the policies employed by
all other agents. The method relies on alternating
maximization, which computes a policy for an agent
that maximizes the joint reward while fixing the
policies of other agents. The procedure is repeated



until the joint policy converges to a local optimum,
and is outlined in Algorithm 1.

Algorithm 1 Search Heuristic

1: procedure SEARCH(f ) F fusion strategy f
2: initialize: a? with COC status
3: while a? not converged and not timeout do
4: for each aircraft i do
5: for each anew 2 A do
6: a a?

7: ai  anew

8: if f .a/ > f .a?/ then a? D a

9: output: a?

D. Coordination Algorithm and Variants
In the UAS Traffic Management system, aircraft

information is updated frequently to a centralized
system. To avoid over-estimating system specifica-
tions, we assume that the updates are simple and
consist only of a unique aircraft identifier, latitude
and longitude, heading, and speed. These values can
be directly mapped to our large MMDP and pairwise
encounter relative states.

1) Centralized coordination: To incorporate the
search heuristic into a serial coordination scheme,
each aircraft first broadcasts its message to the sys-
tem. The system then computes the locally optimal
joint policy Algorithm 1, and sends resolution advi-
sories to each aircraft individually. Figure 2 visualizes
the joint policies computed with the max-sum and
max-min utility fusion methods for a three-aircraft
encounter scenario using a heat map. The first air-
craft is flying straight with a heading of 0ı, and
the second and third aircraft are flying straight with
headings of 180ı. All aircraft are flying at 10 m=s.
With the second and third aircraft coordinates fixed at
.1200m;600m/ and .1200m;�600m/, respectively,
the first aircraft’s coordinates are varied over x;y 2
Œ�2000m;2000m�. The left, center, and right insets
plot the suggested action for the first, second, and
third aircraft, respectively, when the first aircraft’s
coordinates are varied across the plot. The color at
any coordinate indicates suggested bank angles for
the case where the first aircraft is at the coordinates
flying with a 0ı angle heading.

As explained in Section 5, max-sum utility fu-
sion counts nonzero bank angle costs multiple times.

This multiple counting thus produces the turn sug-
gestion regions much smaller than the one generated
by the max-min method. The “COC” status regions
outside of the 4 km “fly-straight” zone on the max-
sum plots are due to the limited range in the pair-
wise solution. An interesting feature from the max-
min policy is the “patches” in the center and right
insets. In the center inset, the pink patch at around
y D �1000m tells the second aircraft at y D 600m
to bank right if the first aircraft is in that patch.
Likewise, the light blue patch in the right inset tells
the third aircraft at y D �600m to bank left if the
first aircraft is in that patch. Intuitively, these patches
indicate that both the second and third aircraft should
synchronize their banking to avoid the first aircraft.
One important property of the decomposition methods
is that they do not begin advising nonzero bank angles
(thus deviating aircraft from their intended trajectory)
any earlier than the pairwise encounter policy. This
behavior can be verified mathematically from the
utility fusion definitions.

2) Distributed coordination I: The second co-
ordination scheme is an obvious distribution of each
iteration in Algorithm 1. Upon receipt of a potential
conflict warning and the global state information from
the central server, each aircraft initializes a COC
joint policy and greedily computes the best action
for itself assuming that all other aircraft will fly as
if clear of conflict. The solutions are then broadcast
and synchronized by the central server, producing a
new joint policy with each entry being updated with
the corresponding aircraft’s greedily chosen action.
The greedy computation is then executed again with
the assumption that all other aircraft will execute the
new joint policy, followed by a synchronization step.
This step is repeated until convergence or time-out,
wherein the best joint policy so far is executed by
all aircraft. While simple in concept, we foresee sig-
nificant communication costs due to synchronization
steps at each iteration.

3) Distributed coordination II: This alternative
distributed scheme attempts to minimize communica-
tions cost at the risk of having unsynchronized joint
policies across aicraft. In this scheme, all aircraft
in the encounter execute their own search using
Algorithm 1 and combine their solutions to find a
better overall joint policy. Conceptually, the multi-
ple instances of search solutions serve as multiple
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Figure 2. Triple Aircraft Encounter Policy Visualization

random restarts of the local optimization scheme.
As a result, the aircraft may end up with different
joint policies, and we introduce an “approximate
synchronization” procedure that uses only one joint
policy broadcast from each aircraft. This method
encourages synchronization by incorporating these
broadcast coordination messages as online rewards
(in addition to utility fusion). But because it does
not guarantee perfect synchronization—the cost of
limiting communications—the performance might be
negatively impacted as compared to the previous two
coordination methods. The procedure is as follows.

Each aircraft first receives broadcast information
from other aircraft in the encounter from the central
system. They then independently compute their solu-
tions to the global problem with the search heuristic.
After computing their own joint policy solutions,
they send coordination messages consisting of their
solutions to the central server, which are then received
by all aircraft. Next, each aircraft incorporates all
messages. At this step, each aircraft assumes that

the action corresponding to each intruder aircraft’s
own action in the broadcast joint policy is fixed. That
is, if aircraft i broadcasts a joint policy stating that
ai D 10ı, all other aircraft assume that aircraft i ’s
action is held fixed at 10ı. (2) for every joint policy
broadcast, a reward is associated with the actions that
other aircraft suggest an aircraft should do. In our
experiments, positive rewards of 0.5 are added for
each received suggested action that coincide with the
ownship’s action. For instance, if aircraft i and j

both broadcast joint policies indicating that aircraft
k should bank at �10ı, the total positive reward of
1.0 would be incorporated into the utility function as
a online reward for also taking action �10ı. In the
final step, a greedy search is executed by each aircraft
for the best action it should take given fixed intruder
bank angles and the new online rewards. These steps
are summarized as follows:

1) initialize resolution
2) broadcast own state and receive other states
3) execute independent search heuristic



4) send and receive coordination messages
5) incorporate messages
6) find and execute greedy action.

6. Numerical Simulation
The speed and scaling of our algorithms are

demonstrated with a range of examples randomly
generated from an encounter model. These examples
are intentionally kept simple for illustrative purposes,
but can easily be extended with more refined networks
and aircraft models. This section presents the en-
counter model and baselines against which the meth-
ods are benchmarked against. This section concludes
with a discussion of simulation results.

A. Encounter Model
The coordination algorithms were evaluated

against a stress-test set of multi-threat encounters
randomly generated from an encounter model. As
described in the previous section, the positions and
velocities of each aircraft were available to them in-
ternally, but not to other aircraft. Although encounters
between more than three aircraft are very rare for the
conventional transport aircraft, a large part of current
commercial interest surrounding unmanned aircraft
stems from the potential to use a large number of
transport drones.

Taking into account the above consideration,
the multi-threat encounters ranged from two to ten
aircraft. The positions were initialized uniformly ran-
domly in an annulus such that they were not initially
in conflict. Specifically, the annulus had inner and
outer radii of 2000 m and 3000 m and if a new
aircraft added is closer to some other aircraft than
600 m, we resample the new aircraft position to avoid
initializing aircraft already in conflict. The speeds
of the aircraft were uniformly randomly initialized
between 10 m=s and 20 m=s, and the headings were
initialized to always point straight towards the annulus
center. This ensured that every encounter would have
potential conflicts. In the future, we could develop
a more sophisticated encounter model from, say,
recorded radar data that is statistically representative
of encounters between unmanned aircraft. At present,
however, such data is not yet available at the level of
what exists for commercial aircraft (e.g., TCAS data
used for the encounter model in [21]).

B. Aircraft Model
An ODE solver was used for dynamics equa-

tions, with Gaussian noise in acceleration and bank-
ing. The aircraft maps the resolution advisories to PID
control policies tuned to reach the target bank angle:

R� D�2!n
P�C!n2

�
� tgt
��

�
;

where !n is a constant related to the amount of con-
trol power available and a� tgt is the target bank angle
defined in the joint policy. In simulation, !n D 0:2.

To model state uncertainty due to measurement
error from, say, GPS inaccuracy, the simulations
model the heading and speed error as zero-mean
Gaussians with 2ı and 1 m=s standard deviations,
respectively. The aircraft longitude and latitude infor-
mation are subject to zero-mean Gaussian noise with
50 m standard deviation. To account for bank angle
command errors, the inputs are subject to a zero-
mean Gaussian noise with 2ı standard deviation in
simulation.

When the state is partially observable, a proba-
bility distribution over the state space can be inferred
from a recursive Bayesian estimation from a sequence
of state measurements. This distribution is also called
a belief state. In our algorithm, separate belief states
are maintained for each UAS. To extract the policy
from a belief state instead of an exact state, we use
the QMDP solution U ? as follows:

�? .bi /D argmin
a2A

X
si

bi .si /U
? .si ;a/ ;

where bi is the belief distribution for the i th pairwise
encounter and bi .si / is the probability of being in
state si based on the belief distribution.

C. Baseline Methods
Our centralized and distributed coordination al-

gorithms are tested against a simple command arbitra-
tion heuristic and uncoordinated algorithm that also
uses utility fusion. The latter baseline is designed to
demonstrate how well coordinated aircraft do against
uncoordinated ones.

1) Closest threat command arbitration: In the
first of our baseline algorithms, we consider the clos-
est threat command arbitration method. This method
separates an n-aircraft multi-threat scenario into n

pairwise encounters for each of the n aircraft. Each
aircraft then executes the action suggested by the



solution to pairwise encounter with the lowest sep-
aration distance. Because the closest intruder is often
the most immediate threat, prioritizing this pairwise
encounter seems sensible.

2) Uncoordinated with utility fusion: In the sec-
ond baseline, each aircraft is able to receive the basic
state information for all other aircraft from a central
system, but is unable to tell what other aircraft might
do. Each aircraft then assumes that all other aircraft
are white noise intruders that travel roughly along
their initial headings. The action policy is extracted
using utility fusion greedily with fixed COC status
advisories for all other aircraft.

7. Results and Analysis
The experiments consist of 1,080,000 simula-

tions with encounters ranging from two to ten aircraft
running on a 3.40 GHz Intel i7 processor with 32 GB
RAM. This section discusses the results.

A. Decision Time
The decision time for any algorithm was never

more than 50 ms—much smaller than the time be-
tween decisions of 5 s. The decision time results for
each algorithm using the max-min utility function
are plotted in Figure 3, and the max-sum results
are essentially identical. The legend is to be read as
follows

� closest: closest-thread command arbitration
� uncoord.: uncoordinated with utility fusion
� centralized: centralized coordination
� dist. I: distributed coordination I
� dist. II: distributed coordination II.

B. Safety Performance
Figure 4 illustrates the performance of the base-

line and coordination algorithms as the number of air-
craft in potential conflict with each other is increased.
The plot is the result of encounter simulations for both
utility fusion strategies. It plots the probability that
an encounter results in a loss of minimum separation
between any pair of aircraft for different algorithms
and utility fusions based on the assumed bank angle
and speed disributions. For example, if there were
two distinct pairs of aircraft that came into con-
flict for a four-aircraft scenario throughout its entire
simulation, the number of conflict increases by two.
In the same scenario, the total number of potential
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Figure 3. Average Decision Times (Max-Min)

conflicts is
�

4
2

�
D 6. Each encounter was simulated for

500 seconds. The figure omits conflict probabilities
for the closest-threat command arbitration method as
conflicts occur an order of magnitude more frequently
than in the distributed coordination methods.

It is not surprising that our methods performed
much better than the closest-threat command arbitra-
tion method. Past work suggest that utilizing state-
action values from sub-agents of a complex system
can result in better performance than trying to ar-
bitrate over actions from these sub-agents [9], [16],
[22]. Even the uncoordinated baseline significantly
outperformed the closest-threat baseline by five times
for the max-sum strategy. As expected from the
policy visualization and explanation, that the max-min
strategy is much more conservative than the max-sum
strategy improves the overall safety.

In all cases, the max-min utility fusion produced
policies that were about an order of magnitude safer
than the max-sum utility fusion policies. For any num-
ber of aircraft, the distributed coordination algorithms
does about ten times as well as the closest-threat
command arbitration heuristic, and about 10% better
than the uncoordinated method. The two distributed
schemes perform roughly as well as the centralized
methods, which is surprising given that the first
variant uses less compute time on average and the
second variant does not guarantee the synchronization
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Figure 4. Conflict Probability as the Number of Aircraft in Encounter Increases

of joint policies. The results thus validate the effec-
tiveness of both approaches. The second distributed
coordination algorithm is more practical than the
first due to the larger communication cost in the
multiple synchronizations of the latter. However, the
development of an asynchronous version of the first
distributed scheme might be worthwhile to capitalize
on its reduced computation requirements.

C. Safety vs. Alert Rate Trade-Off
To trade-off between safety (conflict probability)

and alert rate, we vary the weight �4 on the reward
component for the clear-of-conflict indicator function
in (4). Specifically, we varied �4 on a uniform loga-
rithmic scale from 10�3 to 102. The trade-off plot is
shown in Figure 5, where the alert rate is defined to be
the average number of alerts per aircraft per encounter
simulation, and the conflict probability is defined
to be the same as above. We only plot the curves
generated by the centralized and distributed methods
that use the max-min utility fusion method, since
they were the highest performing algorithms. The best
performing points are at the bottom-left “knee” of the
Pareto frontier, minimizing both conflict probability
and alert rate, and correspond to �4 2 Œ1;10�. The
plot also suggests that the centralized coordination
algorithm is slightly better than other schemes on both
the safety and alert rate metrics.
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Figure 5. Trade-off Plot for Safety vs. Alert Rate

8. Conclusion and Future Work
We have demonstrated three coordination algo-

rithms that can solve the problem rapidly and effec-
tively in the context of UAS Traffic Management.
Joint policies that coordinate multiple aircraft turns
can be computed from a look-up table and online
reward functions in the order of microseconds. Future
work will include more complex pilot response mod-



els that explicitly take into account noncompliance.
We will also explore an asynchronous version of the
second distributed coordination scheme to alleviate
potential communication issues. Because a priority
for the traffic management system is to ensure safety
while minimizing trajectory deviations for aircraft,
these coordination algorithms need to be integrated
with a return-to-path algorithm.

Supplementary material
The software implementation of this work can

be found together with documentation at

https://github.com/sisl/ConflictAvoidanceDASC.
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