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Abstract
Given genomic variation data from multiple individuals, computing the likelihood of complex

population genetic models is often infeasible. To circumvent this problem, we introduce a

novel likelihood-free inference framework by applying deep learning, a powerful modern

technique in machine learning. Deep learning makes use of multilayer neural networks to

learn a feature-based function from the input (e.g., hundreds of correlated summary statis-

tics of data) to the output (e.g., population genetic parameters of interest). We demonstrate

that deep learning can be effectively employed for population genetic inference and learning

informative features of data. As a concrete application, we focus on the challenging problem

of jointly inferring natural selection and demography (in the form of a population size change

history). Our method is able to separate the global nature of demography from the local

nature of selection, without sequential steps for these two factors. Studying demography

and selection jointly is motivated by Drosophila, where pervasive selection confounds

demographic analysis. We apply our method to 197 African Drosophila melanogaster
genomes from Zambia to infer both their overall demography, and regions of their genome

under selection. We find many regions of the genome that have experienced hard sweeps,

and fewer under selection on standing variation (soft sweep) or balancing selection. Inter-

estingly, we find that soft sweeps and balancing selection occur more frequently closer to

the centromere of each chromosome. In addition, our demographic inference suggests that

previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

Author Summary

Deep learning is an active area of research in machine learning which has been applied to
various challenging problems in computer science over the past several years, breaking
long-standing records of classification accuracy. Here, we apply deep learning to develop a
novel likelihood-free inference framework to estimate population genetic parameters and
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learn informative features of DNA sequence data. As a concrete example, we focus on the
challenging problem of jointly inferring natural selection and demographic history.

Introduction
With the advent of large-scale whole-genome variation data, population geneticists are cur-
rently interested in considering increasingly more complex models. However, statistical infer-
ence in this setting is a challenging task, as computing the likelihood of a complex population
genetic model is a difficult problem both theoretically and computationally.

In this paper, we introduce a novel likelihood-free inference framework for population
genomics by applying deep learning, which is an active area of machine learning research. To
our knowledge, deep learning has not been employed in population genomics before. A recent
survey article [1] provides an accessible introduction to deep learning, and we provide a high-
level description below. Our general goal in this paper is to demonstrate the potential of deep
learning as a powerful framework for population genetic analysis that can allow accurate infer-
ence of previously intractable models.

As a concrete example, we consider models of non-equilibrium demography and natural
selection, for which multi-locus full-likelihood computation is prohibitive, and apply deep
learning to the challenging problem of jointly inferring demographic history and selection (see
[2] for a recent review of this topic). One reason why this problem is difficult is that demogra-
phy (for example, a bottleneck in population size) and selection can leave similar signals in the
genome. Untangling the two factors directly has rarely been attempted; most methods that esti-
mate selection try to demonstrate robustness to demographic scenarios, rather than estimating
demographic parameters jointly with selection. The demographic models considered in this
paper are restricted to a single population with time-varying effective population size, but the
overall framework presented here can be applied to more general demographic models. We
anticipate many algorithmic, modeling, and application directions that could emerge from this
proof of concept.

Our focus on the joint inference of demography and selection is motivated by Drosophila,
where previous demographic estimates [3] may have been confounded by pervasive selection.
The reverse has occurred as well, with selection estimates being confounded by demography
[4]. See [5] for a more thorough discussion of the role selection plays in the Drosophila genome.
To test our method, we simulate data under a variety of realistic demographies for an African
population of Drosophila melanogaster. For each demographic history, we simulate many
regions under different selection parameters. We then apply our tailored deep learning method
using hundreds of potentially informative summary statistics. From the output of this trained
network, we demonstrate that parameters can be accurately inferred for test datasets, and inter-
pret which statistics are making the biggest contributions. After training our deep network, we
also apply it to analyze 197 Drosophila melanogaster genomes from Zambia, Africa [6] to learn
about their effective population size change history and selective landscape.

A summary of related works
Several machine learning methods have been developed for selection only, often focusing on
classifying the genome into neutral versus selected regions. Examples include methods based
on support vector machines (SVMs) [7–9] or boosting [10–12]. Often these methods demon-
strate robustness to different demographic scenarios, but do not explicitly infer demography.
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Many methods have been developed to infer ancestral population size changes, including
PSMC [13], diCal [14, 15], and MSMC [16]. These methods make the underlying assumption
that selection does not significantly bias the results. This is perhaps somewhat true for humans,
but is not a valid assumption for many species such as Drosophila, for which selection seems
ubiquitous throughout the genome.

Few previous works have addressed both population size changes and selection. Galtier
et al. [17] developed a likelihood-based method for distinguishing between a bottleneck and
selection. They applied their method to Drosophila data to conclude that a series of selective
sweeps was more likely than a bottleneck, but did not explicitly infer parameters for both selec-
tion and demography. In their method, Galtier et al. assumed that demographic events affect
the entire genome, whereas selection is a local phenomenon. In contrast, Gossmann et al. [18]
estimated the effective population size locally along the genome, and reported that it is corre-
lated with the density of selected sites. To make our results as easily interpretable as evolution-
ary events as possible, we estimate global effective population size changes.

Approximate Bayesian Computation (ABC) [19, 20] is a likelihood-free inference method
based on simulating datasets and comparing their summary statistics. (A more detailed
description of the framework is provided below.) This approach has been used to study various
complex population genetic models (e.g., [21–23]) for which likelihood computation is prohib-
itive. Partly due to several influential theoretical works [24–31], the popularity of ABC has
grown rapidly over the past decade. ABC’s main advantages are that it is easy to use and is able
to output a posterior distribution. There are a few challenges, however: 1) ABC suffers from
the “curse of dimensionality,” with decreasing accuracy and stability as the number of sum-
mary statistics grows [32]. 2) ABC typically uses a rejection algorithm, so the simulated data-
sets are not used optimally, and often a very large number are required. 3) It is difficult to
interpret the output of ABC in terms of which statistics were the most informative for each
parameter. 4) Although ABC can be used very effectively for continuous parameter inference,
it would be difficult to use ABC for a complex scenario that involved joint inference of continu-
ous parameters and categorical distributions. To our knowledge, ABC has thus not been previ-
ously applied to the problem of jointly inferring demography (using continuous effective
population sizes) and selection (using discrete classification). The work of Bazin et al. [33] esti-
mates demographic and selection parameters using a hierarchical ABC approach, though not
in an explicit joint framework.

We see our deep learning method as a complimentary approach to, rather than a direct
replacement of, other likelihood-free inference methods such as ABC or SVM. Deep learning
has several advantages such as making full use of datasets, elegantly handling correlations
between summary statistics, and producing interpretable features of the data. It also produces
an “inverse” function from the input summary statistics to the population genetic parameters
of interest. However, in contrast to ABC, it does not provide a posterior distribution.

A brief introduction to deep learning
Deep learning has its beginnings in neural networks, which were originally inspired by the way
neurons are connected in the brain [34]. Neural networks have been studied for over 60 years
and a huge body of literature exists on the topic. A neural network is typically used to learn a
complex function between inputs (data) and outputs (response variables) in the absence of a
model, so it can be thought of as a generalized regression framework. While standard regres-
sion and classification methods involve fitting linear combinations of fixed basis functions, a
neural network tries to learn basis functions (usually non-linear) appropriate for the data. A
neural network architecture consists of multiple layers of computational units (nodes), with
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connections between the layers but not between nodes within a layer. Within a layer, each
node computes a transformation (usually non-linear) of the outputs from the previous layer.
S1 Fig illustrates a simple feed-forward neural network with a single hidden layer. The phrase
“deep learning” refers to algorithms for learning deep neural network architectures with many
hidden layers.

The universal approximation theorem [35, 36] states that any continuous function on com-
pact subsets of Rn can be uniformly approximated by a feed-forward neural network with a sin-
gle hidden layer, provided that the number of nodes in the hidden layer is sufficiently large and
the transformation (called the activation function) associated with each node satisfies some
mild conditions. However, it can be challenging to learn the weights of such a network and to
interpret the hidden layer. So as learning problems became more complex, it was desirable to
train networks with more hidden layers. Since their introduction over 30 years ago, deep archi-
tectures have proved adept at modeling multiple levels of abstraction. However, they were
notoriously difficult to train since their objective functions are non-convex and highly non-lin-
ear, and the level of non-linearity increases with the number of layers in the network.

A major breakthrough was made in 2006 when Hinton and Salakhutdinov [37] showed that
a deep feed-forward neural network can be trained effectively by first performing unsupervised
“pretraining” one layer at a time, followed by supervised fine-tuning using a gradient-descent
algorithm called back-propagation [38]. (Simply put, pretraining provides a good initialization
point for non-convex optimization.) They applied their learning algorithm to dimensionality
reduction of images and achieved substantially better results than PCA-based methods.

Following the work of Hinton and Salakhutdinov, deep learning has been applied to various
challenging problems in computer science over the last several years, making groundbreaking
progress. Deep learning broke long-standing records for accuracy that had been set by
approaches based on hand-coded rules. Well-known examples include automatic speech recog-
nition (transforming spoken words into typed text) [39, 40] and computer vision (automatically
classifying images into different categories and tagging objects/individuals in photos) [41].

Many variations have been developed, including dropout, which attempts to learn better
and more robust features of the data (see [42, 43]). Deep learning has also been applied to
problems in neuroscience [44] and computational biology [45–48], but has not been used for
population genetics before. We demonstrate here that deep learning can accommodate more
complex models than existing techniques, and can provide a complimentary approach to exist-
ing likelihood-free inference in population genetics. For example, deep learning could be used
to select optimal statistics for ABC (as demonstrated in [49]), or another method.

ABC background
Rejection-based methods have been used since the late 1990’s (see [19, 50]) to estimate popula-
tion genetic parameters when the likelihood is difficult to compute. Early improvements to ABC
quickly helped make it a popular method for a variety of scenarios (see [20] for a good introduc-
tion). ABC works by simulating many datasets under a prior for the parameters of interest.
Then these datasets are reduced to a vector of summary statistics that are ideally informative for
the parameters. The summary statistics that are closest to the summary statistics for the target
dataset are retained, and the corresponding parameters used to estimate the desired posterior
distributions. ABC has many advantages, including ease of use and the output of a posterior dis-
tribution. However, there are a few shortcomings, which various works have sought to address.

In its simplest form, ABC does not naturally handle correlated or weakly informative sum-
mary statistics, which can add noise to the data. To tackle this problem, many methods for
dimensionality reduction or wisely selecting summary statistics have been proposed (see [26,
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29, 31, 51, 52], and [53] for a dimensionality reduction comparison). However, simple reduc-
tions cannot always learn subtle relationships between the data and the parameters. Expert
pruning of statistics helps some methods, but given the lack of sufficient statistics, valuable
information can be eliminated. Blum and François [28] suggested performing a dimensionality
reduction step on the summary statistics via a neural network similar to S1 Fig. This reduction
is similar in spirit to the work presented here, although there are many algorithmic and appli-
cation differences.

A second issue with ABC is the rejection step, which does not make optimal use of the data-
sets that are not retained. The more statistics and parameters used, the more datasets must be
simulated and rejected to properly explore the space, making the interaction between these two
issues problematic. To address the problem of rejecting datasets, different weighting
approaches have been proposed (see [28] for a good example of how the estimation error
changes as fewer datasets are rejected). The idea is to keep more datasets, but then weight each
retained dataset by its distance to the target dataset. However, few approaches utilize all the
datasets in this way, and the most popular implementation of ABC (ABCtoolbox, [54]) typically
still rejects most of the simulated datasets by default.

One final issue with ABC is the black-box nature of the output. Given the distances between
the simulated datasets and the target dataset, and the posterior, there is no clear way to tell
which statistics were the most informative.

Results
We first describe the simulated dataset we generated to investigate joint inference of demo-
graphic history and selection. In the Methods section, we describe how to transform each
region (as well as each region of the real data) into a set of 345 summary statistics, and also
detail our deep learning algorithm. In what follows, we present the results of our method in a
variety of different contexts.

Simulating data
To create a simulated dataset that is appropriate for our scenario of interest, we first define the
response variables we would like to estimate. For simplicity, we consider piecewise-constant
effective population size histories with three epochs: a recent effective population size N1, a bot-
tleneck size N2, and an ancient size N3. Further, we define a genomic region as belonging to 4
different selection classes: no selection (neutral), positive directional selection (hard sweep),
selection on standing variation (soft sweep), and balancing selection. See [55] for a more com-
plete analysis of the different types of selection in Drosophila. To accurately reflect that demog-
raphy affects the entire genome while selection affects a particular region, we simulate many
genomic regions under the same demographic history, but the selection class for each region is
chosen independently. See Fig 1 for a simplified illustration of the data.

To simulate data, we used the program msms [56]. To make our simulated data as close to
the real data as possible, we simulated n = 100 haplotypes, and correspondingly downsampled
the Zambia Drosophila melanogaster dataset to match. We repeated the following procedure
2500 times. First we selected three population sizes for the demographic model, then simulated
160 regions with these sizes, 40 for each selection scenario. Each region was 100 kb, with the
selected site (if present) occurring randomly in the middle 20 kb of the region. We used a base-
line effective population size Nref = 100,000, a per-base, per-generation mutation rate μ =
8.4 × 10−9 [57], and a per-base, per-generation recombination rate r equal to μ, as inferred by
PSMC [13]. This ratio of recombination to mutation rate is somewhat lower than what has
been inferred in other works (see [58, 59]), so we also simulated a testing dataset with a higher
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recombination rate, described below. However, it is likely that there is significant variation in
this ratio across the genome [60]. We used a generation time of 10 generations per year. Based
on the population size change results of PSMC, we chose the time change-points for demo-
graphic history to be t1 = 0.5 and t2 = 5 in coalescent units. Scaled effective population size
parameters λi : = Ni/Nref and their prior distributions are below:

1. Recent effective population size scaling factor: λ1 * Unif(3, 14).

2. Bottleneck effective population size scaling factor: λ2 * Unif(0.5, 6).

3. Ancient effective population size scaling factor: λ3 * Unif(2, 10).

For the selection classes, the different types are shown below:

• Class 0, neutral: no selection, neutral region.

• Class 1, hard sweep: positive selection on a de novomutation (i.e., hard sweep). For the selec-
tion coefficient, we used s 2 {0.01, 0.02, 0.05, 0.1}, with 10 regions for each value of s. The
onset of selection was chosen to be 0.005 in coalescent units, which provided sweeps at a vari-
ety of different stages of completion at the present time. We discarded datasets where the fre-
quency of the selected allele was 0 (early loss of the beneficial mutation due to drift), but for a
large fraction of datasets, the beneficial allele had not yet fixed.

• Class 2, soft sweep: positive selection on standing variation (i.e., soft sweep). The selection
coefficients and selection start time were chosen as in the hard sweep scenario, but now the
initial frequency of the beneficial allele was chosen to be 0.001.

• Class 3, balancing: heterozygote advantage, balancing selection. The selection start time and
selection coefficients were chosen in the same fashion as Class 1.

Using this strategy, we simulated 2500 different demographic histories, with 160 regions for
each one, for a total of 400,000 datasets. To build 160 regions for each demography, we simu-
lated 40 datasets for each of the selection classes above.

Fig 1. Input data for the demography and selection scenario. For each demographic history (bottleneck), we simulated many different genomic regions.
Each region can either have no selection (neutral), one site with an de novomutation under positive selection (hard sweep), one site under balancing
selection, or one standing variant under positive selection (soft sweep).

doi:10.1371/journal.pcbi.1004845.g001

Deep Learning for Population Genetic Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004845 March 28, 2016 6 / 28



Results for demography and selection on simulated data
Of the 400,000 total datasets, we used 75% for training and left out 25% for testing. In Table 1,
we show the effective population size results for a network with 3 hidden layers respectively
with 25, 25, and 10 nodes (5 layers total including input and output). The best results were
found when we averaged the statistics for all of the datasets (160 “regions”) with the same
demography, then ran this average through the trained network.

Table 2 shows the results of our three different size prediction methods (see Methods) for
an example demography. For each parameter, we include a range between the 2.5th and 97.5th
quantiles. To further investigate uncertainty in our estimates, we also include a violin plot of
the three population sizes, shown in Fig 2A. In this example (and more generally), our point
estimate of the most ancient size N3 is the least accurate, but the most recent size N1 has the
largest uncertainty. When considering a single dataset, there is not always a clear winner
among our three prediction methods. Overall, the average statistic method is usually the most
accurate, followed by the neutral regions method.

To analyze the selection results, we calculated a confusion matrix in Table 3 to show which
datasets of each class were classified correctly, or misclassified as belonging to a different class.
The rows of a confusion matrix represent the true class of each dataset, and the columns repre-
sent the predicted or called class. An ideal confusion matrix would have all 1’s (100%) on the
diagonal, and 0’s off the diagonal. Our most frequent error is classifying hard sweep datasets as
neutral (row 2, column 1 of the confusion matrix). We hypothesized that this was either
because selection occurred anciently and quickly, or because selection occurred recently and
the sweep was not yet complete. To test this, we examined the results conditional on the fre-
quency of the selected allele at present. The results shown in Table 4 suggest that in fact many
of the sweeps were not complete, which is why the regions sometimes appeared neutral.

Table 1. Deep learning results for population sizes under the scenario with demography and selec-
tion, using a network with 3 hidden layers of sizes 25, 25, and 10. We evaluate the results in three ways,
using the relative error of the estimates: |Nest − Ntrue|/Ntrue. First, for each test demography, we average the
statistics for each dataset, and then run these values through the training network. Second, for each test
demography, we run the datasets through the network one by one, then average the predictions. Finally, we
perform the second procedure, but with only the regions we classified as neutral. We note that the most
ancient size (N3) is always the least accurately estimated.

Deep learning predictions N1 error N2 error N3 error

Average stat prediction 0.051 0.074 0.487

Final prediction 0.098 0.077 0.569

Neutral regions prediction 0.072 0.083 0.566

doi:10.1371/journal.pcbi.1004845.t001

Table 2. Results for an example demography, with the true population sizes shown in the first row. The rows below each dotted line are the three dif-
ferent size predictions for this dataset. Average stat: average the statistics for each region within the same demography, then run these averages through the
trained network. Final: run the statistics for each region through the trained network, then average the results. Neutral regions: only average the results for the
regions we predict as neutral.

N1 N2 N3

True sizes 878,675 235,199 713,001

Average stat prediction 872,541 264,817 600,650

Final prediction 840,784 243,180 622,359

Quantiles (2.5th, 97.5th) (659231, 954631) (209797, 279496) (597402, 649887)

Standard deviation 74,477 37,238 54,165

Neutral regions prediction 873,289 237,686 619,943

doi:10.1371/journal.pcbi.1004845.t002
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Regardless, this type of false negative error is arguably preferable to falsely calling many regions
to be under selection when they are in fact neutral.

We also wanted to test the impact of unsupervised pretraining using autoencoders (see
Methods). Tables 5 and 6 compare the results for a randomly initialized network to a network
initialized using autoencoders. These results demonstrate that pretraining is very effective. Due
to the non-convex nature of the optimization problem, random initialization is most likely
finding a poor local minima for the cost function.

Lastly, we wanted to assess the impact of training the deep network on data that was created
under different conditions than the testing data. In particular, we simulated testing data where
the ratio of the recombination rate to the mutation rate was equal to 4 (instead of 1 as in our
previous results). The results of this experiment are shown in S1 Table. This rather large differ-
ence in the testing data negatively impact the results, but much more so for selection than for
the effective population sizes. This is perhaps due to the dependence of selection inference on
LD and haplotype statistics, which would be more affected by recombination rate variation.

We also simulated testing data with bottlenecks that were more extreme than the training
data, to assess the impact of a misspecified range of demographic models. Specifically, the most

Fig 2. Violin plots of population size estimates for (A) an example simulated dataset and (B) the real dataset. In both cases, we have the largest
uncertainty for the most recent population size. For the simulated dataset, the true population sizes are shown in blue, and we note that our point estimate of
the most ancient population size is the least accurate.

doi:10.1371/journal.pcbi.1004845.g002

Table 3. Confusion matrix for the selection predictions, in the demography and selection scenario. Each row represents the datasets that truly belong
to each selection class. Each column represents the datasets that were actually classified as each selection class. Ideally we would like all 1’s down the diag-
onal, and 0’s in the off-diagonal entries. The largest number in each row is shown in boldface. We can see that neutral datasets are the easiest to classify,
and sometimes regions under selection (hard sweeps in particular) look neutral as well (first column). The overall percentage of misclassified datasets was
6.2%.

Called Class

True Class Neutral Hard Sweep Soft Sweep Balancing

Neutral 0.9995 0.0002 0.0003 0.0000

Hard Sweep 0.1434 0.8333 0.0032 0.0201

Soft Sweep 0.0096 0.0010 0.9891 0.0003

Balancing 0.0301 0.0356 0.0056 0.9287

doi:10.1371/journal.pcbi.1004845.t003
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recent population size was outside the range of the training data for all the testing datasets. The
results are shown in S2 Table. In contrast to the previous testing scenario, here the population
size results are somewhat negatively impacted (largely for the most recent size), but the selec-
tion results are only impacted slightly. In general, identifying model misspecification for con-
tinuous population genetic parameters can be done as follows: if the predicted value of a
normalized continuous parameter is outside the range [0,1], then the testing/real data parame-
ter is outside the range of the training/simulated data parameter. This simple criterion can help
users identify when their simulated data needs to be modified to provide accurate results for
their real data.

Results on real Drosophila melanogaster data
We then ran the real Drosophila melanogaster data through our trained network just like any
other test dataset. We considered only the chromosome arms 2L, 2R, 3L, and 3R in this study.
We partitioned each chromosome arm into 20 kb windows and ran our method on five conse-
cutive windows at a time, sliding by 20 kb after each run. Classification was performed on the
middle 20 kb window. The population size predictions for some of these regions (roughly 14%)
were outside the range of the simulated data, so we discarded them from all further analysis.
These regions tended to be near the telomeres and centromeres, where assembly is often poor.

For the demographic history, the population size results are shown in Table 7. The first row
(average statistic method) is our best estimate, which we also plot and compare with other his-
tories in Fig 3. Our history is close to the PSMC result, although more resolution would be
needed for a proper comparison. We based our time change points (t1 and t2) on PSMC, so it
would be surprising if these histories were notably inconsistent. The expansion after the bottle-
neck is roughly consistent with previous results citing the range expansion of Drosophila mela-
nogaster (out of sub-Saharan Africa) as beginning around 15,000 years ago [61]. This range
expansion likely led to an effective population size increase like the one we infer. Our expan-
sion time is also consistent with bottleneck estimates in non-African Drosophila melanogaster
populations, such as the Netherlands population investigated by Thornton and Andolfatto

Table 4. Hard sweep results, broken down by the present-day frequency (f) of the selected allele (which we would not know for a real dataset). We
defined “low” frequency as f 2 [0, 0.3), “moderate” frequency as f 2 [0.3, 0.7), and “high” frequency as f 2 [0.7, 1]. We can see that if the frequency of the
selected allele is low, the region is often misclassified as neutral, since the selective sweep is not yet complete. However, if the frequency is moderate or high,
the dataset is usually classified correctly as a hard sweep.

Called Class

f Neutral Hard Sweep Soft Sweep Balancing

Low (18.4% of datasets) 0.6820 0.3137 0.0009 0.0035

Moderate (12.5% of datasets) 0.0988 0.8220 0.0000 0.0793

High (69.1% of datasets) 0.0084 0.9734 0.0044 0.0138

doi:10.1371/journal.pcbi.1004845.t004

Table 5. Relative error on the test dataset, for a deep network with 6 hidden layers. For the results in the
first row, the weights of the entire network were initialized randomly, then optimized. In the second row, the
weights were initialized using autoencoders for each layer. The positive impact of unsupervised pretraining is
clear; random initialization causes the optimization to get stuck in a local minima.

Initialization Type N1 error N2 error N3 error

Random 0.429 0.421 0.710

Autoencoder 0.061 0.166 0.577

doi:10.1371/journal.pcbi.1004845.t005
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[58]. In Fig 2B, we include a violin plot of the population size estimates from each region. We
have the largest uncertainty for the most recent population size.

The number of windows classified as Neutral, Hard Sweep, Soft Sweep, and Balancing Selec-
tion are 1101, 2455, 179, 404, respectively. See S3 Table for further details. If we restrict our
analysis to regions classified with probability greater than 0.9999, then we find 42 hard sweeps,
34 soft sweeps, and 17 regions under balancing selection. In S4 Table, we include a table of
these high-confidence windows, along with which genes are found in each window. We also
include a plot, Fig 4, of where the selected regions fall throughout the genome (restricted to
regions with a probability at least 0.95). Interestingly, soft sweeps and balancing selection seem
to occur more frequently closer to the centromere of each chromosome. There is also an excess
of hard sweeps on chromosome arm 2L.

Upon examining the genes in the top regions classified to be under selection, we find several
notable results. In the hard sweep category, a few of the top regions harbor many genes
involved in chromatin assembly or disassembly. Further, there are two regions each containing
exactly one gene, where the gene has a known function. These are Fic domain-containing pro-
tein (detection of light and visual behavior), and charybde (negative regulation of growth).

In the soft sweep category, we find many genes related to transcription, and several related
to pheromone detection (chemosensory proteins). We also find four regions each containing
exactly one gene, with that gene having a known function. These are gooseberry (segment
polarity determination), steppke (positive regulation of growth), Krüppel (proper body

Table 7. Population size results for AfricanDrosophila from Zambia, rounded to the nearest hundred. The first row (predictions based on averaging
the statistics for each region in the Drosophila genome) represents our best estimate of the population sizes.

Prediction N1 (recent) N2 (bottleneck) N3 (ancestral)

Average stat prediction 544,200 145,300 652,700

Final prediction 694,000 178,400 638,300

Quantiles (2.5th, 97.5th) (359300, 1004300) (63800, 265000) (593200, 694900)

Standard deviation 170,400 53,800 27,100

Neutral regions prediction 635,900 170,700 646,700

doi:10.1371/journal.pcbi.1004845.t007

Table 6. Confusion matrix for the selection predictions, compared between random initialization (top) and autoencoder initialization (bottom), for a
deep network with 6 hidden layers. Again, ideally we would like all 1’s down the diagonal, and 0’s in the off-diagonal entries. The largest number in each
row is shown in boldface. When the network is initialized randomly, almost every dataset is classified as neutral; the network has not really learned anything
meaningful from the input data. The overall percentage of misclassification is 74.8% for random initialization, while it is only 6.1% for autoencoder
initialization.

Called Class

True Class Neutral Hard Sweep Soft Sweep Balancing

Random Initialization

Neutral 1.000 0.000 0.000 0.000

Hard Sweep 0.978 0.007 0.000 0.015

Soft Sweep 1.000 0.000 0.000 0.000

Balancing 1.000 0.000 0.000 0.000

Autoencoder Initialization

Neutral 1.000 0.000 0.000 0.000

Hard Sweep 0.145 0.831 0.004 0.021

Soft Sweep 0.011 0.001 0.987 0.000

Balancing 0.030 0.028 0.001 0.941

doi:10.1371/journal.pcbi.1004845.t006
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formation), and Accessory gland protein 36DE (sperm storage, [62]). Fly embryos with a
mutant Krüppel (German for “cripple”) gene have a “gap” phenotype with the middle body seg-
ments missing [63]. We also identify three interesting genes in regions with other genes: semi-
nal fluid proteins 36F and 38D (see [64]), and deadlock, which is involved in transposable
element silencing, which preserves genome integrity [65].

Fig 3. Comparison between demographic histories. On the left in green is PSMC [13], run on the entire genome for a subset of the data (n = 20). In
blue is our history from the first line of Table 7. On the right in red is the history from Duchen et al. [3] (note the change in the y-axis scale). The difference
between our estimates and these previous estimates is likely due in large part to their assumption of a very short (1000 generations) bottleneck. Given this
timing constraint, only a very severe bottleneck could fit the data. A more gradual bottleneck seems more realistic, although we do not have a simple
explanation for why there was a bottleneck at all.

doi:10.1371/journal.pcbi.1004845.g003

Fig 4. Plot of the selected regions we infer for AfricanDrosophila melanogaster. Each of the 4 subplots is a chromosome arm (2L, 2R, 3L and 3R). We
restricted the plot to selected sites with a probability of at least 0.95.

doi:10.1371/journal.pcbi.1004845.g004
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Finally in the balancing selection category, one interesting gene we find is nervana 3, which
is involved in the sensory perception of sound. We also find balancing selection regions con-
taining the genes cycle (circadian rhythms) and Dihydropterin deaminase (eye pigment),
although there are other genes within these putatively selected regions.

Most informative statistics
One of the advantages of deep learning is that it outputs an optimal weight on each edge con-
necting two nodes of the network, starting with the input statistics and ending with the output
variables. By investigating this network, we are able to determine which statistics are the “best”
or most helpful for estimating our parameters of interest. Here we use two different methods,
one using permutation testing and the other using a perturbation approach described in S1
Algorithm.

To perform permutation testing, we randomly permuted the values of each statistic across
all the test datasets and then measured the resulting decrease in accuracy. For each output (3
population sizes and selection category), we then retained the 25 statistics that caused the larg-
est accuracy decreases. The results are shown in the 4-way Venn diagram in Fig 5, which high-
lights statistics common to each subset of outputs. For each statistic name in the diagram,
close,mid, and far represent the genomic subregion where the statistic was calculated. The
numbers after each colon refer to the position of the statistic within its distribution or order;
for the folded site frequency spectrum (SFS) statistics, it is the number of minor alleles. Several
statistics are informative for all the parameters, including the raw number of segregating sites
(“S”) in each subregion and the number of singletons (“SFS, far: 1”). There is generally more
overlap between the statistics for selection and N1 or N2, than with the statistics for selection
and N3, possibly because selection occurs on a more recent timescale. Tajima’s D is also most
important for selection (which it was designed to detect) and N1. Identity-by-state (IBS) statis-
tics seem to play an increasingly more important role as the population sizes become more
ancient. Perhaps unsurprisingly, LD statistics are most important for selection. Interestingly,
the SFS is not as informative as one might have anticipated. However, the number of single-
tons is very informative, especially for selection and N1, which could have been foreseen given
that recent events shape the terminal branches of a genealogy, and thus the singletons. The
distances between segregating sites (“BET” statistics) do not generally seem very helpful. Nei-
ther does H2, the frequency of the second most common haplotype. It is comparing H1 to H2
(via the H12 statistic) that is helpful.

The results (S2 Fig) from the perturbation method share some similarities and have some
differences from the Venn diagram in Fig 5. An interesting set of four statistics is informative
for all response variables, including very long IBS tracts close to the selected site (“IBS, close:
30”) and the H12 statistic. Additionally, “LD, mid: 4” represents low LD between sites close to
the selected site and sites mid-range from the selected site (likewise for LD “LD, far: 4”). Many
low LD pairs could signal a lack of selection, and vice versa. IBS statistics are generally not as
helpful for selection, but extremely informative for the population sizes, especially N2 and N3,
as also observed in the permutation method. Bottlenecks can have a significant impact on IBS
tract distributions, so it makes sense that N2 (the bottleneck size) is the most reliant on IBS
statistics. The number of segregating sites S is generally quite informative, especially for
selection.

It is interesting that the list of notable less-informative statistics is very similar for both per-
mutation and perturbation methods. Overall, roughly the same set of informative statistics were
identified by each method, but the precise position of each statistic on the Venn diagram shifted.
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Comparison with ABCtoolbox
Although ABC is not well suited for our scenario of interest and deep learning is a complemen-
tary method, we wanted to find a scenario where we could compare the performance of these
two methods. To this effect, we restricted the analysis to estimating (continuous) demographic
parameters only. We used the popular ABCtoolbox [54], using the same training and testing
datasets as for deep learning. For ABC, the training data represents the data simulated under
the prior distributions (uniform in our case), and each test dataset was compared with the
training data separately. We retained 5% of the training datasets, and used half of these retained
datasets for posterior density estimation. Overall, we used 75% of the datasets for training and
25% for testing.

We tested two scenarios, one with the full set of summary statistics (345 total), and the
other with a reduced set of summary statistics (100 total). For the reduced set of summary sta-
tistics, we chose statistics which seemed to be informative: the number of segregating sites,
Tajima’s D, the first 15 entries of site frequency spectrum, H1, and the distribution of distances

Fig 5. A Venn diagram of most informative statistics for each output variable (N1,N2,N3, and selection). For each variable, the top 25 statistics were
chosen using permutation testing. The Venn diagram captures statistics common to each subset of output variables, with notable less informative statistics
shown in the lower right. Close, mid, and far represent the genomic region where the statistic was calculated. The numbers after each colon refer to the
position of the statistic within its distribution or order. For the SFS statistics, it is number of minor alleles. For each region, there are 50 SFS statistics, 16 BET
statistics (distribution between segregating sites), 30 IBS statistics, and 16 LD statistics.

doi:10.1371/journal.pcbi.1004845.g005
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between segregating sites. It is interesting that the informative statistics identified above do not
match this set of “intuitively” chosen statistics. The results are shown in Table 8, which suggest
that deep learning produces more accurate estimates of the recent population size (N1) than
does ABCtoolbox, whereas they have comparable accuracies for more ancient sizes.

Regularization of the network weights
In deep learning, one hyper-parameter that should be investigated closely is the regularization
parameter λ in the cost function, also called the weight decay parameter. (See Methods for
details). If λ is set to be too high, large weights will be penalized too much, and interesting fea-
tures of the data cannot be learned well. But if λ is set too low, the weights tend to display run-
away behavior. Due to this balance, a validation procedure is typically used to find the right λ.
In our case, the additional runtime of simulating more data and performing more training
would be too computationally expensive, but we do provide a small validation study in S3 Fig

Runtime
In terms of runtime, the majority is spent simulating the data. During training, most of the
runtime is spent fine-tuning the deep network, which requires computing the cost function
and derivatives many times. To speed up this computation, our deep learning implementation
is parallelized across datasets, since each dataset adds to the cost function independently. This
significantly improves the training time for deep learning, which can be run in a few days on
our simulated dataset (400,000 regions) with a modest number of hidden nodes/layers. Once
the training is completed, an arbitrary number of datasets can be tested more or less instan-
taneously. In contrast, each of the “training” datasets for ABC must be examined for each test
dataset. This takes several weeks for a dataset of this size (which is why we tested ABC on a sub-
set of the data), although it could be parallelized across the test datasets. We include a runtime
comparison on the reduced dataset in Table 9.

Discussion
In this paper, we have sought to demonstrate the potential of deep learning as a new inference
framework for population genomic analysis. This investigation is still in its infancy, and there
are many directions of future work. One important advantage of deep learning is that it pro-
vides a way to distinguish informative summary statistics from uninformative ones. Here we
have presented two methods for extracting informative statistics given a trained deep network.
Other methods are possible, and it is an open question which one would produce the most
accurate results. It would be interesting to down-sample statistics using a variety of methods,
then compare the results. Overall, learning more about how various summary statistics relate
to parameters would be useful for population genetics going forward.

Table 8. A comparison between ABCtoolbox and deep learning for demography only. Out of 1000 demographies (160,000 datasets total), 75% were
used for training and 25% for testing. In this scenario, deep learning generally outperforms ABCtoolbox, as measured by the relative error: |Nest − Ntrue|/Ntrue.
There is generally more improvement using deep learning when the number of statistics is larger.

Dataset Method N1 error N2 error N3 error

Full summary statistics ABCtoolbox 0.062 0.043 0.218

Deep learning 0.044 0.028 0.221

Filtered summary statistics ABCtoolbox 0.161 0.035 0.311

Deep learning 0.065 0.055 0.319

doi:10.1371/journal.pcbi.1004845.t008
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The prospect of using deep learning to classify regions as neutral or selected is very appeal-
ing for subsequent demographic inference. There are other machine learning methods that per-
form such classification, but they are generally limited to two classes (selected or neutral). One
exception is a study in humans [66], which classifies genomic regions as neutral or under posi-
tive, negative, or balancing selection. Although their approach does not jointly infer selection
and demography, it would be interesting to see their method used on Drosophila.

We infer many hard sweeps in African Drosophila, which is perhaps expected given their
large effective population size. However, when restricting our analysis to selected regions with
high confidence, the numbers of hard sweeps and soft sweeps are comparable. It would be
interesting to analyze our results in the context of a simulation study by Schrider et al. [67],
which found that regions classified as soft sweeps are often truly the “shoulders” of hard
sweeps. This possibility is worth investigating, as the signatures of soft sweeps and soft shoul-
ders are extremely similar. In our simulations, both hard and soft sweeps are relatively recent,
which makes them easier to detect. It would be useful to incorporate datasets with a wider
range of selection onset times, which could capture regions of the real data that are currently
being classified as neutral. Right now we have 4 different selection classes which are all forms
of positive selection. To incorporate background or purifying selection, a 5th class of (weakly)
deleterious mutations could be added.

One aspect of the simulations that warrants future study is the effect of the ratio of recombi-
nation to mutation rate, ρ/θ. From running PSMC on 20 haplotypes from Zambia, we inferred
ρ/θ = 1, whereas other studies have found ρ/θ = 6.8 [59] and ρ/θ = 10 [58] for a population
from Zimbabwe. Both these works also show significant variation in this ratio across different
Drosophila populations. Andolfatto and Przeworski [60] also find significant variation in this
ratio across the genome. As noted by Haddrill et al. [59], recent bottlenecks can make this ratio
appear lower than it actually is, which is possibly the case for our dataset. As shown in the Sup-
porting Information, misspecification of this ratio can lead to poor selection classification
results. In general, assuming a lower recombination rate than reality leads to conservative
results, since sites are assumed to be less independent [58–60]. Our takeaway from this analysis
is that ρ/θ should be accurately estimated using a more robust method than PSMC or incorpo-
rated as a model parameter, with datasets simulated under a variety of ratios. It would also be
interesting to investigate variation in the recombination rate across the genome, which could
be incorporated into future simulations.

Deep learning can make efficient use of even a limited number of simulated datasets. In this
vein, it would be interesting to use an approach such as ABCMCMC [24] to simulate data, and

Table 9. Approximate runtime results. Simulating the data (which is the same for both methods) and com-
puting the summary statistics is the most time consuming part of the process, although it is highly parallelized.
ABCtoolbox could also be parallelized, but we did not implement that here. For the “filtered statistics” row, the
345 statistics have been downsampled to 100 for all the datasets.

Task ABCtoolbox Deep Learning

Simulating data 370 hrs (10 * 15 cores) 370 hrs (10 * 15 cores)

Computing summary statistics 1800 hrs (1 core) 1800 hrs (1 core)

Demography only (1000 × 160 datasets)

Training and testing (filtered statistics) 114 hrs (1 core) 3.75 hrs (20 cores)

Training and testing (unfiltered) 336 hrs (1 core) 11 hrs (20 cores)

Demography & selection (2500 × 160 datasets)

Training N/A 74 hrs (20 cores)

Testing N/A 3 min (1 core)

doi:10.1371/journal.pcbi.1004845.t009

Deep Learning for Population Genetic Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004845 March 28, 2016 15 / 28



then use deep learning on these simulated datasets. Alternatively, deep learning could be used to
select informative statistics for a subsequent method such as ABC [49]. Blum and François [28]
used a single-layer neural network to perform (non-linear) regression to obtain a posterior mean,
which they used to adjust the parameters of the posterior sample for a more accurate posterior
distribution. It is unclear whether deep networks (where the theory is much more complicated)
could be used in the same way, although there is the concept of a residual which could be used for
parameter adjustment in an rejection-based framework. Such hybrid approaches could be a fruit-
ful area of further exploration, potentially extending the generality and usefulness of ABC.

We would also like to apply deep learning to a wider variety of scenarios in populations
genetics. Population structure and splits would be examples, although these scenarios would
most likely require very different sets of summary statistics.

On the computer science side, deep learning has almost exclusively been used for classifica-
tion, not continuous parameter inference. It would be interesting to see the type of continuous
parameter inference presented here used in other fields and applications.

Finally, machine learning methods have been criticized for their “black-box” nature. In
some sense they throw away a lot of the coalescent modeling that we know to be realistic,
although this is included somewhat in the expert summary statistics of the data. It would be
advantageous to somehow combine the strengths of coalescent theory and the strengths of
machine learning to create a robust method for population genetic inference.

Methods

Deep learning details
In this section we provide the theory behind training deep networks. The notation in this sec-
tion follows that of [68]. Let x(i) be the vector of summary statistics for dataset i, and y(i) the
vector of response variables that dataset i was simulated under. If we havem such datasets,
then together {(x(1), y(1)), . . ., (x(m), y(m))} form the training data that will be used to learn the
function from summary statistics to response variables. Deep neural networks are a way to
express this type of complex, non-linear function. The first layer of the network is the input
data, the next layers are the “hidden layers” of the network, and the final layer represents the
network’s prediction of the response variable.

Cost function for a deep network. An example deep network is shown in Fig 6. The col-

lection of weights between layer ℓ and layer ℓ+1 is denotedWð‘Þ ¼ ðwð‘Þ
jk Þ, where wð‘Þ

jk is the

weight associated with the connection between node j in layer ℓ and node k in layer ℓ+1. The
biases for layer ℓ is denoted b(ℓ). The total number of layers (including the input and output lay-
ers) is denoted L, and the number of hidden nodes in layer ℓ is denoted uℓ. The main goal is to
learn the weights that best describe the function between the inputs and the outputs.

To learn this function, we first describe how the values of the hidden nodes are computed,

given a trial weight vector. The value of hidden node j in layer ℓ� 2 is denoted að‘Þj , and is

defined by

að‘Þj ¼ f zð‘Þj

� �
and zð‘Þj ¼ Wð‘�1Þ

j � að‘�1Þ þ bð‘�1Þ
j ; ð1Þ

whereWð‘�1Þ
j is the jth column of the weight matrixWð‘�1Þ (i.e., all the weights going into node j

of layer ℓ − 1), að‘�1Þ ¼ ðað‘�1Þ
k Þ is a vector of the values of all the nodes in layer ℓ − 1 (with

að1Þ ¼ x, the input vector), and

f ðzÞ :¼ 1

1þ expð�zÞ ð2Þ
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is the activation function. Here we use a logistic function, but other functions can be used.
Another common activation function is the hyperbolic tangent function.

Hence, given the input data and a set of weights, we can feed forward to learn the values of all
hidden nodes, and a prediction of the response variables. These predictions are usually denoted
by hW, b(x

(i)) for our hypothesis for dataset i, based on all the weightsW = (W(1), . . .,W(L-1)) and
biases b = (b(1), . . .,b(L-1)). We will discuss different ways to compute the hypothesis function
later on. To find the best weights, we define a loss function based on the square of the l2-norm
between this hypothesis and the true response variables. This loss function is given by

JðW; bÞ ¼ 1

m

Xm
i¼1

1

2
khW;bðxðiÞÞ � yðiÞk2: ð3Þ

The goal of deep learning is to find the weights (W and b) that minimize this loss function. To
efficiently find these optimal weights, we can use backpropagation to find the gradient. The intu-
ition behind this approach is that once we have found the hypothesis, we then want to see how
much each of the weights contributed to any differences between the hypothesis and the truth.
Therefore we start at the last hidden layer, see howmuch each of those weights contributed,

Fig 6. An example of a deep neural network with two hidden layers. The first layer is the input data (each dataset has 5 statistics), and the last layer
predicts the 2 response variables. The last node in each input layer (+1) represents the bias term. Here the number of layers L = 4, and the number of nodes
(computational units) in each layer is u1 = 5, u2 = 3, u3 = 3, and u4 = 2 (these counts exclude the biases).

doi:10.1371/journal.pcbi.1004845.g006
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then work our way backwards, using the gradient of the previous layer to compute the gradient
of the next layer. For this procedure we need to compute the partial derivatives of the cost func-
tion with respect to each weight.

Consider a single training example x with associated output y. The cost for this dataset is a
term in Eq (3) and is denoted by

JðW; b; x; yÞ :¼ 1

2
khW;bðxÞ � yk2:

Then, define

dð‘Þj :¼ @JðW; b; x; yÞ
@zð‘Þj

;

where zð‘Þj , defined in Eq (1), is the input to the activation function for node j in layer ℓ. We first

consider dðLÞ
j for the final layer. Noting that the jth entry of hW, b(x) is f ðzðLÞj Þ, we get

dðLÞ
j ¼ ½f ðzðLÞj Þ � yj�f 0 zðLÞj

� �
:

Based on this initialization, we can recursively compute all the δ variables:

dð‘Þj ¼
Xu‘þ1

k¼1

wð‘Þ
jk d

ð‘þ1Þ
k

" #
f 0 zð‘Þj

� �
:

Now we can use the δ variables to recursively compute the partial derivatives for one dataset:

@JðW; b; x; yÞ
@wð‘Þ

jk

¼ að‘Þj dð‘þ1Þ
k ;

@JðW; b; x; yÞ
@bð‘Þk

¼ dð‘þ1Þ
k :

Finally, putting all the datasets together we get

@JðW; bÞ
@wð‘Þ

jk

¼
Xm
i¼1

@JðW; b; xðiÞ; yðiÞÞ
@wð‘Þ

jk

and
@JðW; bÞ
@bð‘Þk

¼
Xm
i¼1

@JðW; b; xðiÞ; yðiÞÞ
@bð‘Þk

:

Since we can compute the derivatives using this backpropagation algorithm, we can use the
LBFGS optimization routine (as implemented in [69]) to find the weights that minimize the
cost function.

Unsupervised pretraining using autoencoders. It is possible to train a deep network by
attempting to minimize the cost function described above directly, but in practice, this proved
difficult due to the high-dimensionality and non-convexity of the optimization problem. Ini-
tializing the weights randomly before training resulted in poor local minima. Hinton and Sala-
khutdinov [37] sought to initialize the weights in a more informed way, using an unsupervised
pretraining routine. Unsupervised training ignores the output (often called the “labels”) and
attempts to learn as much as possible about the structure of the data on its own. PCA is an
example of unsupervised learning. In Hinton and Salakhutdinov, the unsupervised pretraining
step uses an autoencoder to try to learn the best function from the data to itself, after it has
gone through a dimensionality reduction step (this can be thought of as trying to compress the
data, then reconstruct it with minimal loss). Autoencoding provides a way to initialize the
weights of a deep network that will ideally be close to optimal for the supervised learning step
as well. See S4 Fig for a diagram of an autoencoder.
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Training an autoencoder is an optimization procedure in itself. As before, letW(1) be the
vector of weights connecting the input x to the hidden layer a, and x(2) be the vector of weights
connecting a to the output layer x̂, which in this case should be as close as possible to the origi-
nal input data. We again typically use the logistic function shown in Eq (2) as our activation
function f, so we can compute the output using:

aj ¼ f ðWð1Þ
j � xþ bð1Þj Þ and x̂k ¼ f ðWð2Þ

k � aþ bð2Þk Þ:

If a linear activation function is used instead of a logistic function, the hidden layer becomes
the principle components of the data. This makes dimensionality reduction with an autoenco-
der similar in spirit to PCA, which has been used frequently in genetic analysis (see [70] for an
example). However, the non-linear nature of an autoencoder has been shown to reconstruct
complex data more accurately than PCA. Using backpropagation as we did before, we can min-
imize the following autoencoder cost function using allm input datasets:

AðW; bÞ ¼ 1

m

Xm
i¼1

1

2
kx̂ðiÞ � xðiÞk2

:

The resulting weightsW�(1) and b�(1) will then be used to initialize the weights between the
first and second layers of our deep network. The weightsW�(2)> and b�(2) are discarded. To
initialize the rest of the weights, we can repeat the autoencoder procedure, but this time we will

use the hidden layer a� ¼ ða�j Þ, where a�j ¼ f ðW�ð1Þ
j � xþ b�ð1Þj Þ, as our input data, and feed it

through the next hidden layer. In this way we can use “stacked” autoencoders to initialize all
the weights of the deep network. Finally, the supervised training procedure described in the
previous section can be used to fine-tune the weights to obtain the best function from the
inputs to the response variables.

When the number of hidden nodes is large, we would like to constrain an autoencoder such
that only a fraction of the hidden nodes are “firing” at any given time. This corresponds to the
idea that only a subset of the neurons in our brains are firing at once, depending on the input
stimulus. To create a similar phenomenon for an autoencoder, we create a sparsity constraint
that ensures the activation of most of the nodes is close to 0, and the activation of a small frac-
tion, ρ, of nodes is close to 1. Let r̂ j be the average activation of the hidden node j:

r̂ j ¼
1

m

Xm
i¼1

ajðxðiÞÞ;

where ajðxðiÞÞ is the value of the jth hidden node when activated with dataset x(i). To ensure

sparsity, we would like r̂ j to be close to ρ, our desired fraction of active nodes. This can be

accomplished by minimizing the KL divergence:

Xu2
j¼1

KLðrkr̂ jÞ ¼
Xu2
j¼1

r log
r
r̂ j

þ ð1� rÞ log 1� r
1� r̂ j

" #
;

where u2 is the number of nodes in the hidden layer of the autoencoder. We multiply this term
by a sparsity weight β.

In addition, a regularization term is included, which prevents the magnitude of the weights
from becoming too large. To accomplish this, we add a penalty to the cost function that is the
sum of the squares of all weights (excluding the biases), weighted by a well-chosen constant λ,
which is often called the weight decay parameter. Including both sparsity and regularization,
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our final autoencoder cost becomes:

AlðW; bÞ ¼ 1

m

Xm
i¼1

1

2
kx̂ðiÞ � xðiÞk2 þ b

Xu2
j¼1

KLðrkr̂ jÞ þ
l
2

X2

‘¼1

Xu‘
j¼1

Xu‘þ1

k¼1

ðwð‘Þ
jk

h i2
:

We also regularize the weights on the last layer during fine-tuning, so our deep learning cost
function becomes:

JlðW; bÞ ¼ 1

m

Xm
i¼1

1

2
khW;bðxðiÞÞ � yðiÞk2 þ l

2

XuL�1

j¼1

XuL
k¼1

wðL�1Þ
jk

h i2
:

The final layer: Continuous variable vs. classification. In population genetics, often we
want to estimate continuous response variables. To compute our hypothesis for a response var-
iable, based on a set of weights, we could use a logistic activation function, Eq (2), as we did for
the other layers. However, the logistic function is more suitable for binary classification.
Instead, we use a linear activation function, so in the case of a single response variable, our
hypothesis for dataset i becomes

hlinear
W; bðxðiÞÞ ¼ ½aðL�1ÞðxðiÞÞ�TWðL�1Þ þ bðL�1Þ:

In other words, it is the dot product of the activations of the final hidden layer and the weights
that connect the final hidden layer to the response variables.

For such classification results, if we had two classes, we could use logistic regression to find
the probability a dataset was assigned to each class. With more than two classes, we can extend
this concept and use softmax regression to assign a probability to each class. If we have K classes
labeled 1, . . ., K, we can define our hypothesis as follows

hsoftmax
W;b ðxðiÞÞ ¼

pðyðiÞ ¼ 2 j xðiÞ;W; bÞ

pðyðiÞ ¼ 2 j xðiÞ;W; bÞ

..

.

pðyðiÞ ¼ K j xðiÞ;W; bÞ

2666666664

3777777775

¼ 1

Z

expfWðL�1Þ
1 � aðL�1ÞðxðiÞÞ þ bðL�1Þ

1 g

expfWðL�1Þ
2 � aðL�1ÞðxðiÞÞ þ bðL�1Þ

2 g

..

.

expfWðL�1Þ
K � aðL�1ÞðxðiÞÞ þ bðL�1Þ

K g

2666666664

3777777775
;

where Z is the sum of all the entries, so that our probabilities sum to 1. Using this formulation,
we can define our classification cost function:

J softmax
l ðW; bÞ ¼ � 1

m

Xm
i¼1

XK

j¼1

1fyðiÞ ¼ jg log pðyðiÞ ¼ jjxðiÞ;W; bÞ þ l
2

XuL�1

s¼1

XuL
t¼1

WðL�1Þ
st

� �2
:

Intuitively, we can think about this cost function as making the log probability of the correct
class as close to 0 as possible.
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Transforming input data into summary statistics
For many deep learning applications, the raw data can be used directly (the pixels of an image,
for example). Unfortunately, we currently cannot input raw genomic data into a deep learning
method. Similarly to ABC, we need to transform the data into summary statistics that are
potentially informative about the parameters of interest. Unlike ABC, however, deep learning
should not be negatively affected by correlated or uninformative summary statistics. Thus we
sought to include a large number of potentially informative summary statistics of the data. To
account for the impact of selection, we divided each 100 kb region into three smaller regions:
1) close to the selected site (40–60 kb), 2) mid-range from the selected site (20–40 kb and 60–
80 kb), and 3) far from the selected site (0–20 kb and 80–100 kb). These regions are based off
of the simulation scenario in Peter et al. [23], and shown more explicitly in Fig 7. Within each
of these three regions, we calculated the following statistics, except where noted.

For all the statistics described below, n is the haploid sample size. In the case of simulated
data, n = 100. For the real data, we had 197 samples; within each 100 kb region we sorted the
samples by missing data, then retained the 100 most complete samples, except where noted.

1. Number of segregating sites within each smaller region, S. Since all of the statistics must be
in [0, 1], we normalized by Smax = 5000 (any S> Smax was truncated): 3 statistics.

2. Tajima’s D statistic [71], computed as follows

D ¼ p� S=a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðp� S=a1Þ
q ;

where π is the average number of pairwise differences between two samples, and

a1 ¼
Pn�1

i¼1 1=i. We normalized by Dmin = −3.0 and Dmax = 3.0, again truncating the rare sta-
tistic outside this range: 3 statistics.

3. Folded site frequency spectrum (SFS): ηi is the number of segregating sites where the minor
allele occurs i times out of n samples, for i = 1, 2, . . ., bn/2c. For the real data, for each segre-
gating site, enough samples were included to obtain 100 with non-missing data. If that was
not possible for a given site, the site was not included. To normalize the SFS, we divided

Fig 7. Regions used for computing the statistics, which are based off of Peter et al. [23]. Note that the selected site was chosen randomly within region
1.

doi:10.1371/journal.pcbi.1004845.g007
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each ηi by the sum of the entries, which gives us the probability of observing iminor alleles,
given the site was segregating: 50 � 3 = 150 statistics.

4. Length distribution between segregating sites: let Bk be the number of bases between the k
and k+1 segregating sites. To compute the distribution of these lengths, we define J bins and
count the number of lengths that fall into each bin:

dBET
j ¼ jk 2 f1; 2; � � � ; S� 1g : Bk 2 bin jj

S
:

We choose J = 16 equally spaced bins, the first starting at 0 and the last starting at 300: 16 �
3 = 48 statistics.

5. Identity-by-state (IBS) tract length distribution: for each pair of samples, and IBS tract is a
contiguous genomic region where the samples are identical at every base (delimited by bases
where they differ). For all pairs, let L be the set of IBS tract lengths. In a similar fashion to
the length distribution statistics, we defineM bins, and count the number of IBS tract
lengths that fall into each bin:

dIBS
m ¼ j‘ 2 L : ‘ 2 bin mj

jLj :

We chooseM = 30 equally spaced bins, the first starting at 0 and the last starting at 5000: 30 �
3 = 90 statistics.

6. Linkage disequilibrium (LD) distribution: LD is a measure of the correlation between two
segregating sites. For example, if there was no recombination between two sites, their alleles
would be highly correlated and LD would be high in magnitude. If there was infinite recom-
bination between two sites, they would be independent and have LD close to 0. For two loci,
let A, a be the alleles for the first site, and B, b be the alleles for the second site. Let pA be the
frequency of allele A, pB be the frequency of allele B, and pAB be the frequency of haplotype
AB. Then the linkage disequilibrium is computed by

DAB ¼ pAB � pApB:

Here we compute the LD between pairs of sites, where one site is in the “selected” region,
and the other is in each of the three regions (including the selected region). Then we create
an LD distribution similar to the IBS distribution above, using 16 bins, with the first bin
ending at −0.05, and the last bin starting at 0.2: 16 � 3 = 48 statistics.

7. H1, H12, and H2 statistics, as described in Garud et al. [72]. These statistics help to distin-
guish between hard and soft sweeps, and are calculated in the selected (middle) region only:
3 statistics.

This gives us a total of 345 statistics.

Deep learning for demography and selection
Deep learning model. To modify our deep learning method to accommodate this type of

inference problem, during training we have an outer-loop that changes the demography as nec-
essary, and an inner loop that accounts for differences in selection for each region. During test-
ing, we compare three different methods for predicting the effective population sizes: (1)
Average stat: we average the statistics for each region within the dataset (corresponding to the
same demography), then run this average through the trained network. (2) Final: we run the
statistics for each region through the trained network separately, then average the results. (3)
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Neutral regions: we use the same method as (2), but instead of using all the regions, we only use
the ones we predict as being neutral. We also include a range between the 2.5th and 97.5th
quantiles. To predict the selection class, we obtain a probability distribution over the classes for
each region, then select the class with the highest probability.

One final complication is that we estimate continuous response variables for the population
sizes, but consider selection to be a discrete response variable. This involves a linear activation
function for the population sizes and a softmax classifier for selection. A diagram of our deep
learning method is shown in Fig 8.

Analysis of informative statistics. One advantage of deep learning is that the weights of
the optimal network give us an interpretable link between the summary statistics and the out-
put variables. However, from these weights, it is not immediately obvious which statistics are
the most informative or “best” for a given output variable. If we only wanted to use only a
small subset of the statistics, which ones would give us the best results? To answer this ques-
tion, we use both a permutation testing approach and a perturbation method described in S1
Algorithm.

Software availability
An open-source software package (called evoNet) that implements deep learning algorithms
for population genetic inference is available at https://sourceforge.net/projects/evonet.

Supporting Information
S1 Table. Results for very different training and testing data. In this scenario, the testing
data is simulated with a recombination rate that is 4 times higher than that of the training data.

Fig 8. Our deep learning framework for effective population size changes and selection.

doi:10.1371/journal.pcbi.1004845.g008
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The effective population size results (top table) are still generally accurate, but selection (bot-
tom table) is harder to predict. Neutral regions are predicted correctly, but soft sweeps are also
often classified as neutral. The classifier has difficulty distinguishing between hard sweeps and
balancing selection. The top table should be compared to Table 1 and the bottom table should
be compared to Table 3.
(TIFF)

S2 Table. Results for very different training and testing data. In this scenario, the testing
data is simulated with bottleneck parameters that are more severe than the training data. This
has a slight negative impact on the population size results (largely on the most recent size
which was outside the training range), but has little effect on the selection results. The overall
percentage of misclassified regions is 7.8%. The top table should be compared to Table 1 and
the bottom table should be compared to Table 3.
(TIFF)

S3 Table. Classification results for all windows, along with which genes are found in each
window.
(XLS)

S4 Table. High-confidence windows, along with which genes are found in each window.
(XLS)

S1 Fig. An example of a classical neural network. The single hidden layer serves to learn
informative combinations of the inputs, remove correlations, and typically reduce the dimen-
sion of the data. After the optimal weight on each connecting arrow is learned through labeled
training data, unlabeled data can be fed through the network to estimate the response vari-
ables.
(TIFF)

S2 Fig. A Venn diagram of most informative statistics for each output variable (N1, N2, N3,
and selection), using the perturbation method. For each variable, the top 25 statistics were
chosen, according to the procedure in S1 Algorithm. The Venn diagram captures statistics
common to each subset of output variables, with notable less informative statistics shown in
the lower right. Close, mid, and far represent the genomic region where the statistic was calcu-
lated. The numbers after each colon refer to the position of the statistic within its distribution
or order. For the SFS statistics, it is number of minor alleles. For each region, there are 50 SFS
statistics, 16 BET statistics (distribution between segregating sites), 30 IBS statistics, and 16 LD
statistics.
(TIFF)

S3 Fig. Validation procedure to find the optimal weight decay parameter]Validation proce-
dure for a network with two hidden layers of size 8 and 4. The x-axis shows increasing values
of λ, and the y-axis shows the error on the validation dataset. The curve shows a characteristic
shape with low and high λ producing poorer results than an intermediate value. For these hid-

den layers sizes and this dataset,l^¼ 0:0001 was optimal.
(TIFF)

S4 Fig. Example of an autoencoder]An example of an autoencoder. The input data (x) is
projected into a (usually) lower dimension (a), then reconstructed (x̂). The weights of an auto-
encoder are optimized such that the difference between the reconstructed data and the original
data is minimal.
(TIFF)
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S1 Algorithm. Method for finding the most informative statistics for each response vari-
able.
(TIFF)
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