
The VLDB Journal
DOI 10.1007/s00778-008-0119-9

REGULAR PAPER

Data integration with uncertainty

Xin Luna Dong · Alon Halevy · Cong Yu

Received: 17 February 2008 / Revised: 7 July 2008 / Accepted: 5 October 2008
© Springer-Verlag 2008

Abstract This paper reports our first set of results on
managing uncertainty in data integration. We posit that data-
integration systems need to handle uncertainty at three levels
and do so in a principled fashion. First, the semantic map-
pings between the data sources and the mediated schema
may be approximate because there may be too many of them
to be created and maintained or because in some domains
(e.g., bioinformatics) it is not clear what the mappings should
be. Second, the data from the sources may be extracted using
information extraction techniques and so may yield erro-
neous data. Third, queries to the system may be posed with
keywords rather than in a structured form. As a first step to
building such a system, we introduce the concept of probabi-
listic schema mappings and analyze their formal foundations.
We show that there are two possible semantics for such map-
pings: by-table semantics assumes that there exists a correct
mapping but we do not know what it is; by-tuple semantics
assumes that the correct mapping may depend on the particu-
lar tuple in the source data. We present the query complexity
and algorithms for answering queries in the presence of pro-
babilistic schema mappings, and we describe an algorithm for
efficiently computing the top-k answers to queries in such a
setting. Finally, we consider using probabilistic mappings in
the scenario of data exchange.

X. L. Dong (B)
AT & T Labs-Research, Florham Park, NJ 07932, USA
e-mail: lunadong@research.att.com

A. Halevy
Google Inc., Mountain View, CA 94043, USA
e-mail: halevy@google.com

C. Yu
Yahoo! Research, New York, NY 10018, USA
e-mail: congyu@yahoo-inc.com

Keywords Data integration · Probabilistic schema
mapping · Data exchange

1 Introduction

Data integration and exchange systems offer a uniform inter-
face to a multitude of data sources and the ability to share
data across multiple systems. These systems have recently
enjoyed significant research and commercial success [18,20].
Current data integration systems are essentially a natural
extension of traditional database systems in that queries are
specified in a structured form and data are modeled in one of
the traditional data models (relational, XML). In addition, the
data integration system has exact knowledge of how the data
in the sources map to the schema used by the data integration
system.

We argue that as the scope of data integration applications
broadens, such systems need to be able to model uncertainty
at their core. Uncertainty can arise for multiple reasons in
data integration. First, the semantic mappings between the
data sources and the mediated schema may be approximate.
For example, in an application like Google Base [16] that
enables anyone to upload structured data, or when map-
ping millions of sources on the deep web [25], we cannot
imagine specifying exact mappings. In some domains (e.g.,
bioinformatics), we do not necessarily know what the exact
mapping is. Second, data are often extracted from unstruc-
tured sources using information extraction techniques. Since
these techniques are approximate, the data obtained from the
sources may be uncertain. Finally, if the intended users of the
application are not necessarily familiar with schemata, or if
the domain of the system is too broad to offer form-based
query interfaces (such as web forms), we need to support
keyword queries. Hence, another source of uncertainty is

123

X. L. Dong et al.

the transformation between keyword queries and a set of
candidate structured queries.

Dataspace Support Platforms [19] envision data integra-
tion systems where sources are added with no effort and the
system is constantly evolving in a pay-as-you-go fashion to
improve the quality of semantic mappings and query ans-
wering. Enabling data integration with uncertainty is a key
technology to supporting dataspaces.

This paper takes a first step towards the goal of data inte-
gration with uncertainty. We first describe how the architec-
ture of such a system differs from a traditional one (Sect. 2).
At the core, the system models tuples and semantic mappings
with probabilities associated with them. Query answering
ranks answers and typically tries to obtain the top-k results
to a query. These changes lead to a requirement for a new
kind of adaptivity in query processing.

We then focus on one core component of data integra-
tion with uncertainty, namely probabilistic schema mappings
(Sect. 3). Semantic mappings are the component of a data
integration system that specify the relationship between the
contents of the different sources. The mappings enable the
data integration to reformulate a query posed over the media-
ted schema into queries over the sources [17,22]. We intro-
duce probabilistic schema mappings, and describe how to
answer queries in their presence.

We define probabilistic schema mapping as a set of pos-
sible (ordinary) mappings between a source schema and a
target schema, where each possible mapping has an asso-
ciated probability. We begin by considering a simple class
of mappings, where each mapping describes a set of corres-
pondences between the attributes of a source table and the
attributes of a target table. We argue that there are two pos-
sible interpretations of probabilistic schema mappings. In the
first, which we formalize as by-table semantics, we assume
there exists a single correct mapping between the source and
the target, but we do not know which one it is. In the second,
called by-tuple semantics, the correct mapping may depend
on the particular tuple in the source to which it is applied. In
both cases, the semantics of query answers are a generaliza-
tion of certain answers [1] for data integration systems.

We describe algorithms for answering queries in the pre-
sence of probabilistic schema mappings and then analyze the
computational complexity of answering queries (Sect. 4). We
show that the data complexity of answering queries in the
presence of probabilistic mappings is PTIME for by-table
semantics and #P-complete for by-tuple semantics. We iden-
tify a large subclass of real-world queries for which we can
still obtain all the by-tuple answers in PTIME. We then des-
cribe algorithms for finding the top-k answers to a query
(Sect. 5).

The size of a probabilistic mapping may be quite large,
since it essentially enumerates a probability distribution by
listing every combination of events in the probability space.

In practice, we can often encode the same probability
distribution much more concisely. Our next contribution
(Sect. 6) is to identify two concise representations of probabi-
listic mappings for which query answering can be performed
in PTIME in the size of the mapping. We also examine the
possibility of representing a probabilistic mapping as a Bayes
Net, but show that query answering may still be exponential
in the size of a Bayes Net representation of a mapping.

We then consider using probabilistic mappings in the sce-
nario of data exchange (Sect. 7), where the goal is to create
an instance of the target schema that is consistent with the
data in the sources. We show that we can create a probabilistic
database representing a core universal solution in polynomial
time. As in the case of non-probabilistic mappings, the core
universal solution can be used to find all the answers to a given
query. This section also shows the close relationship between
probabilistic databases and probabilistic schema mappings.
In addition, we study some of the basic properties of probabi-
listic schema mappings: mapping composition and inversion
(Sect. 8).

Finally, we consider several more powerful mapping lan-
guages, such as complex mappings, where the correspon-
dences are between sets of attributes, and conditional
mappings, where the mapping is conditioned on a property
of the tuple to which it is applied (Sect. 9).

This article is an extended version of a previous conference
paper [9]. The material in Sects. 7 and 8 is new, as are the
proofs of all the formal results. As follow-up work, we des-
cribe in [32] how to create probabilistic mappings and build
a self-configuring data integration system. In [32] we have
also reported experimental results on real-world data sets
collected from the Web, showing that applying a probabilis-
tic model in data integration enables producing high-quality
query answers with no human intervention.

2 Overview of the system

This section describes the requirements from a data integra-
tion system that supports uncertainty and the overall archi-
tecture of the system. We frame our specific contributions in
the context of this architecture.

2.1 Uncertainty in data integration

A data integration system needs to handle uncertainty at three
levels:
Uncertain schema mappings. Data integration systems rely
on schema mappings for specifying the semantic relation-
ships between the data in the sources and the terms used
in the mediated schema. However, schema mappings can be
inaccurate. In many applications it is impossible to create
and maintain precise mappings between data sources. This

123

Data integration with uncertainty

can be because the users are not skilled enough to provide
precise mappings, such as in personal information manage-
ment [8], because people do not understand the domain well
and thus do not even know what correct mappings are, such
as in bioinformatics, or because the scale of the data prevents
generating and maintaining precise mappings, such as in inte-
grating data of the web scale [25]. Hence, in practice, schema
mappings are often generated by semi-automatic tools and
not necessarily verified by domain experts.

Uncertain data. By nature, data integration systems need
to handle uncertain data. One reason for uncertainty is that
data are often extracted from unstructured or semi-structured
sources by automatic methods (e.g., HTML pages, emails,
blogs). A second reason is that data may come from sources
that are unreliable or not up to date. For example, in enterprise
settings, it is common for informational data such as gender,
racial, and income level to be dirty or missing, even when
the transactional data is precise.

Uncertain queries. In some data integration applications,
especially on the web, queries will be posed as keywords
rather than as structured queries against a well defined
schema. The system needs to translate these queries into some
structured form so they can be reformulated with respect to
the data sources. At this step, the system may generate mul-
tiple candidate structured queries and have some uncertainty
about which is the real intent of the user.

2.2 System architecture

Given the previously discussed requirements, we describe
the architecture of a data integration system that manages
uncertainty at its core. We describe the system by contrasting
it to a traditional data integration system.

The first and most fundamental characteristic of this
system is that it is based on a probabilistic data model. This
characteristic means two things. First, as we process data in
the system we attach probabilities to each tuple. Second, and
the focus of this paper, we associate schema mappings with
probabilities, modeling the uncertainty about the correctness
of the mappings. We use these probabilities to rank answers.

Second, whereas traditional data integration systems begin
by reformulating a query onto the schemas of the data sources,
a data integration system with uncertainty needs to first refor-
mulate a keyword query into a set of candidate structured
queries. We refer to this step as keyword reformulation. Note
that keyword reformulation is different from techniques for
keyword search on structured data (e.g., [2,21]) in that (a) it
does not assume access to all the data in the sources or that
the sources support keyword search, and (b) it tries to dis-
tinguish different structural elements in the query in order to
pose more precise queries to the sources (e.g., realizing that in

Mediated Schema

Q

Q1,...Qm

Keyword
Reformulation

Query
Reformulation

D1

D2

D3

D4

Dk

Q11,...Q1n ... Qk1,...Qkn

Query
Pocessor

Q11,...Q1n,…,Qk1,...Qkn

Fig. 1 Architecture of a data-integration system that handles uncer-
tainty

the keyword query “Chicago weather”, “weather” is an attri-
bute label and “Chicago” is an instance name). That being
said, keyword reformulation should benefit from techniques
that support answering keyword search on structured data.

Third, the query answering model is different. Instead of
necessarily finding all answers to a given query, our goal is
typically to find the top-k answers, and rank these answers
most effectively.

The final difference from traditional data integration sys-
tems is that our query processing will need to be more adap-
tive than usual. Instead of generating a query answering plan
and executing it, the steps we take in query processing will
depend on results of previous steps. We note that adaptive
query processing has been discussed quite a bit in data inte-
gration [23], where the need for adaptivity arises from the
fact that data sources did not answer as quickly as expected
or that we did not have accurate statistics about their contents
to properly order our operations. In our work, however, the
goal for adaptivity is to get the answers with high probabili-
ties faster.

The architecture of the system is shown in Fig. 1. The
system contains a number of data sources and a mediated
schema. When the user poses a query Q, which can be either
a structured query on the mediated schema or a keyword
query, the system returns a set of answer tuples, each with a
probability. If Q is a keyword query, the system first performs
keyword reformulation to translate it into a set of candidate
structured queries on the mediated schema. Otherwise, the
candidate query is Q itself.

Consider how the system answers the candidate queries,
and assume the queries will not involve joins over mul-
tiple sources. For each candidate structured query Q0 and
a data source S, the system reformulates Q0 according to
the schema mapping (which can be uncertain) between S’s

123

X. L. Dong et al.

Fig. 2 The running example: a
a probabilistic schema mapping
between S and T ; b a source
instance DS ; c the answers of Q
over DS with respect to the
probabilistic mapping

(a)

(b)

(c)

schema and the mediated schema, sends the reformulated
query (or queries) to S, retrieving the answers.

If the user asks for all the answers to the query, then the
reformulated query is typically a query with grouping and
aggregation, because the semantics of answers require aggre-
gating the probabilities of answers from multiple sources. If
S does not support grouping or aggregation, then grouping
and aggregation needs be processed in the integration system.

If the user asks for top-k answers, then query processing
is more complex. The system reformulates the query into
a set of queries, uses a middle layer to decide at runtime
which queries are critical to computing the top-k answers,
and sends the appropriate queries to S. Note that we may
need several iterations, where in each iteration we decide
which are the promising reformulated queries to issue, and
then retrieving answers. Furthermore, the system can even
decide which data sources are more relevant and prioritize
the queries to those data sources. Finally, if the data in the
sources are uncertain, then the sources will return answers
with probabilities attached to them.

After receiving answers from different data sources, the
system combines them to get one single set of answer tuples.
For example, if the data sources are known to be independent
of each other, and we obtain tuple t from n data sources
with probabilities p1, . . . , pn , respectively, then in the final
answer set t has probability 1 −�n

i=1(1 − pi). If we know
that some data sources are duplicates or extensions of others,
a different combination function needs to be used.

2.3 Handling uncertainty in mappings

As a first step towards developing such a data integration sys-
tem, we introduce in this paper probabilistic schema map-
pings, and show how to answer queries in their presence.

Before the formal discussion, we illustrate the main ideas
with an example.

Example 1 Consider a data source S, which describes a
person by her email address, current address, and perma-
nent address, and the mediated schema T , which describes
a person by her name, email, mailing address, home address
and office address:

S=(pname, email-addr, current-addr,
permanent-addr)

T=(name, email, mailing-addr, home-addr,
office-addr)

A semi-automatic schema-mapping tool may generate
three possible mappings between S and T , assigning each
a probability. Whereas the three mappings all map pname
to name, they map other attributes in the source and the target
differently. Figure 2a describes the three mappings using sets
of attribute correspondences. For example, mapping m1 maps
pname to name, email-addr to email, current-addr to
mailing-addr, and permanent-addr to home-addr. Beca-
use of the uncertainty about which mapping is correct, we
consider all of these mappings in query answering.

Suppose the system receives a query Q formulated using
the mediated schema and asking for people’s mailing
addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into
different queries:

Q1: SELECT current-addr FROM S
Q2: SELECT permanent-addr FROM S
Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system gene-
rates a single aggregation query based on Q1, Q2 and Q3 to

123

Data integration with uncertainty

compute the probability of each returned tuple, and sends the
query to the data source. Suppose the data source contains a
table DS as shown in Fig. 2b, the system will retrieve four
answer tuples, each with a probability, as shown in Fig. 2c.

If the user requires only the top-1 answer (i.e., the ans-
wer tuple with the highest probability), the system decides at
runtime which reformulated queries to execute. For example,
after executing Q1 and Q2 at the source, the system can
already conclude that (‘Sunnyvale’) is the top-1 answer and
can skip query Q3.

2.4 Source of probabilities

A critical issue in any system that manages uncertainty is
whether we have a reliable source of probabilities. Whereas
obtaining reliable probabilities for such a system is one of
the most interesting areas for future research, there is quite
a bit to build on. For keyword reformulation, it is possible
to train and test reformulators on large numbers of que-
ries such that each reformulation result is given a proba-
bility based on its performance statistics. For information
extraction, current techniques are often based on statistical
machine learning methods and can be extended to compute
probabilities of each extraction result. Finally, in the case of
schema matching, it is standard practice for schema matchers
to also associate numbers with the candidates they propose.
The issue here is that the numbers are meant only as a ran-
king mechanism rather than true probabilities. However, as
schema matching techniques start looking at a larger num-
ber of schemas, one can imagine ascribing probabilities (or
estimations thereof) to their measures. Techniques on gene-
rating probabilistic mappings from schema matching results
are presented in [32].

3 Probabilistic schema mapping

In this section we formally define the semantics of probabi-
listic schema mappings and the query answering problems
we consider. Our discussion is in the context of the relatio-
nal data model. A schema contains a finite set of relations.
Each relation contains a finite set of attributes and is denoted
by R = 〈r1, . . . , rn〉. An instance DR of R is a finite set of
tuples, where each tuple associates a value with each attribute
in the schema.

We consider select-project-join (SPJ) queries in SQL.
Note that answering such queries is in PTIME in the size
of the data.

3.1 Schema mappings

We begin by reviewing non-probabilistic schema mappings.
The goal of a schema mapping is to specify the semantic
relationships between a source schema and a target schema.

We refer to the source schema as S̄, and a relation in S̄ as
S = 〈s1, . . . , sm〉. Similarly, we refer to the target schema as
T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

We consider a limited form of schema mappings that are
also referred to as schema matching in the literature [30].
Specifically, a schema matching contains a set of attribute
correspondences. An attribute correspondence is of the form
ci j = (si , t j), where si is a source attribute in the schema
S and t j is a target attribute in the schema T . Intuitively,
ci j specifies that there is a relationship between si and t j .
In practice, a correspondence also involves a function that
transforms the value of si to the value of t j . For example, the
correspondence (c-degree, temperature) can be specified
as temperature=c-degree ∗1.8 + 32, describing a trans-
formation from Celsius to Fahrenheit. These functions are
irrelevant to our discussion, and therefore we omit them. We
consider this class of mappings because they already expose
many of the novel issues involved in probabilistic mappings
and because they are quite common in practice. We also note
that many of the concepts we define apply to a broader class
of mappings, which we will discuss in detail in Sect. 4.1.

Formally, we define relation mappings and schema map-
pings as follows.

Definition 1 (Schema mapping) Let S̄ and T̄ be relational
schemas. A relation mapping M is a triple (S, T,m), where
S is a relation in S̄, T is a relation in T̄ , and m is a set of
attribute correspondences between S and T .

When each source and target attribute occurs in at most
one correspondence in m, we call M a one-to-one relation
mapping.

A schema mapping M is a set of one-to-one relation map-
pings between relations in S̄ and in T̄ , where every relation
in either S̄ or T̄ appears at most once.

A pair of instances DS and DT satisfies a relation mapping
m if for every source tuple ts ∈ DS , there exists a target
tuple tt ∈ Dt , such that for every attribute correspondence
(s, t) ∈ m, the value of attribute s in ts is the same as the
value of attribute t in tt .

Example 2 Consider the mappings in Example 1. The source
database in Fig. 2b (repeated in Fig. 3a) and the target data-
base in Fig. 3b satisfy m1.

3.2 Probabilistic schema mappings

Intuitively, a probabilistic schema mapping describes a pro-
bability distribution of a set of possible schema mappings
between a source schema and a target schema.

Definition 2 (Probabilistic mapping) Let S̄ and T̄ be rela-
tional schemas. A probabilistic mapping (p-mapping), pM ,
is a triple (S, T,m), where S ∈ S̄, T ∈ T̄ , and m is a set
{(m1,Pr(m1)), . . . , (ml ,Pr(ml))}, such that

123

X. L. Dong et al.

Fig. 3 Example 3 a a source
instance DS ; b a target instance
that is by-table consistent with
DS and m1; c a target instance
that is by-tuple consistent with
DS and 〈m2,m3〉; d
Qtable(DS); e Qtuple(DS)

(a)

(b)

(c)

(d) (e)

– for i ∈ [1, l], mi is a one-to-one mapping between S and
T , and for every i, j ∈ [1, l], i �= j ⇒ mi �= m j .

– Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

A schema p-mapping, pM , is a set of p-mappings between
relations in S̄ and in T̄ , where every relation in either S̄ or T̄
appears in at most one p-mapping.

We refer to a non-probabilistic mapping as an ordinary
mapping. A schema p-mapping may contain both p-mappings
and ordinary mappings. Example 1 shows a p-mapping (see
Fig. 2a) that contains three possible mappings.

3.3 Semantics of probabilistic mappings

Intuitively, a probabilistic schema mapping models the uncer-
tainty about which of the mappings in pM is the correct one.
When a schema matching system produces a set of candidate
matches, there are two ways to interpret the uncertainty: (1)
a single mapping in pM is the correct one and it applies to
all the data in S, or (2) several mappings are partially cor-
rect and each is suitable for a subset of tuples in S, though
it is not known which mapping is the right one for a specific
tuple. Example 1 illustrates the first interpretation and query
rewriting under this interpretation. For the same example,
the second interpretation is equally valid: some people may
choose to use their current address as mailing address while
others use their permanent address as mailing address; thus,
for different tuples we may apply different mappings, so the
correct mapping depends on the particular tuple.

This paper analyzes query answering under both inter-
pretations. We refer to the first interpretation as the by-table
semantics and to the second one as the by-tuple semantics of
probabilistic mappings. We are not trying to argue for one

interpretation over the other. The needs of the application
should dictate the appropriate semantics. Furthermore, our
complexity results, which will show advantages to by-table
semantics, should not be taken as an argument in the favor
of by-table semantics.

We next define query answering with respect to p-
mappings in detail and the definitions for schema p-mappings
are the obvious extensions. Recall that given a query and an
ordinary mapping, we can compute certain answers to the
query with respect to the mapping. Query answering with
respect to p-mappings is defined as a natural extension of
certain answers, which we next review.

A mapping defines a relationship between instances of S
and instances of T that are consistent with the mapping.

Definition 3 (Consistent target instance) Let M =(S, T,m)
be a relation mapping and DS be an instance of S.

An instance DT of T is said to be consistent with DS and
M , if for each tuple ts ∈ DS , there exists a tuple tt ∈ DT ,
such that for every attribute correspondence (as, at) ∈ m,
the value of as in ts is the same as the value of at in tt .

For a relation mapping M and a source instance DS ,
there can be an infinite number of target instances that are
consistent with DS and M . We denote by TarM (DS) the set
of all such target instances. The set of answers to a query Q is
the intersection of the answers on all instances in TarM (DS).
The following definition is from [1].

Definition 4 (Certain answer) Let M = (S, T,m) be a rela-
tion mapping. Let Q be a query over T and let DS be an
instance of S.

A tuple t is said to be a certain answer of Q with respect
to DS and M , if for every instance DT ∈ TarM (DS), t ∈
Q(DT).

123

Data integration with uncertainty

By-table semantics. We now generalize these notions to the
probabilistic setting, beginning with the by-table semantics.
Intuitively, a p-mapping pM describes a set of possible
worlds, each with a possible mapping m ∈ pM . In by-
table semantics, a source table can fall in one of the possible
worlds; that is, the possible mapping associated with that
possible world applies to the whole source table. Following
this intuition, we define target instances that are consistent
with the source instance.

Definition 5 (By-table consistent instance) Let pM = (S,
T,m) be a p-mapping and DS be an instance of S.

An instance DT of T is said to be by-table consistent with
DS and pM , if there exists a mapping m ∈ m such that DS

and DT satisfy m.

Given a source instance DS and a possible mapping m ∈
m, there can be an infinite number of target instances that are
consistent with DS and m. We denote by Tarm(DS) the set
of all such instances.

In the probabilistic context, we assign a probability to
every answer. Intuitively, we consider the certain answers
with respect to each possible mapping in isolation. The pro-
bability of an answer t is the sum of the probabilities of the
mappings for which t is deemed to be a certain answer. We
define by-table answers as follows:

Definition 6 (By-table answer) Let pM = (S, T,m) be a
p-mapping. Let Q be a query over T and let DS be an instance
of S.

Let t be a tuple. Let m̄(t) be the subset of m, such that for
each m ∈ m̄(t) and for each DT ∈ Tarm(DS), t ∈ Q(DT).

Let p = ∑
m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is

a by-table answer of Q with respect to DS and pM .

By-tuple semantics. If we follow the possible-world notions,
in by-tuple semantics, different tuples in a source table can
fall in different possible worlds; that is, different possible
mappings associated with those possible worlds can apply to
the different source tuples.

Formally, the key difference in the definition of by-tuple
semantics from that of by-table semantics is that a consistent
target instance is defined by a mapping sequence that assigns
a (possibly different) mapping in m to each source tuple in
DS . (Without losing generality, in order to compare between
such sequences, we assign some order to the tuples in the
instance).

Definition 7 (By-tuple consistent instance) Let pM = (S,
T,m) be a p-mapping and let DS be an instance of S with d
tuples.

An instance DT of T is said to be by-tuple consistent with
DS and pM , if there is a sequence 〈m1, . . . ,md〉, where d is
the number of tuples in DS , and for every 1 ≤ i ≤ d,

– mi ∈ m, and
– for the i th tuple of DS , ti , there exists a target tuple t ′i ∈

DT such that for each attribute correspondence (as, at) ∈
mi , the value of as in ti is the same as the value of at

in t ′i .

Given a mapping sequence seq =〈m1, . . . ,md〉, we
denote by Tarseq(DS) the set of all target instances that
are consistent with DS and seq. Note that if DT is by-table
consistent with DS and m, then DT is also by-tuple consistent
with DS and a mapping sequence in which each mapping
is m.

We can think of every sequence of mappings seq =
〈m1, . . . ,md〉 as a separate event whose probability is
Pr(seq) = �d

i=1Pr(mi). (In Sect. 9 we relax this indepen-
dence assumption and introduce conditional mappings.) If
there are l mappings in pM , then there are ld sequences of
length d, and their probabilities add up to 1. We denote by
seqd(pM) the set of mapping sequences of length d genera-
ted from pM .

Definition 8 (By-tuple answer) Let pM = (S, T,m) be a
p-mapping. Let Q be a query over T and DS be an instance
of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM),
such that for each seq ∈ seq(t) and for each DT ∈Tarseq(DS),
t ∈ Q(DT).

Let p = ∑
seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a

by-tuple answer of Q with respect to DS and pM .

The set of by-table answers for Q with respect to DS is
denoted by Qtable(DS) and the set of by-tuple answers for
Q with respect to DS is denoted by Qtuple(DS).

Example 3 Consider the p-mapping pM , the source instance
DS , and the query Q in the motivating example.

In by-table semantics, Fig. 3b shows a target instance that
is consistent with DS (repeated in Fig. 3a) and possible map-
ping m1. Figure 3d shows the by-table answers of Q with
respect to DS and pM . As an example, for tuple t = (‘Sun-
nyvale’), we have m̄(t) = {m1,m2}, so the possible tuple
(‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Fig. 3c shows a target instance that
is by-tuple consistent with DS and the mapping sequence
〈m2,m3〉. Figure 3e shows the by-tuple answers of Q with
respect to DS and pM . Note that the probability of tuple t =
(’Sunnyvale’) in the by-table answers is different from that
in the by-tuple answers. We describe how to compute the
probabilities in detail in the next section.

4 Complexity of query answering

This section considers query answering in the presence of
probabilistic mappings. We describe algorithms for query

123

X. L. Dong et al.

answering and study the complexity of query answering in
terms of the size of the data (data complexity) and the size
of the p-mapping (mapping complexity). We note that the
number of possible mappings in a p-mapping can be expo-
nential in the number of source or target attributes; we discuss
more compressive representations of p-mappings in Sect. 6.
We also consider cases in which we are not interested in the
actual probability of an answer, just whether or not a tuple is
a possible answer.

We show that when the schema is fixed, returning all
by-table answers is in PTIME for both complexity mea-
sures, whereas returning all by-tuple answers in general is #P-
complete with respect to the data complexity. Recall that #P is
the complexity class of some hard counting problems (e.g.,
counting the number of variable assignments that satisfy a
Boolean formula). It is believed that a #P-complete problem
cannot be solved in polynomial time, unless P = N P . We
show that computing the probabilities is the culprit here: even
deciding the probability of a single answer tuple under by-
tuple semantics is already #P-complete, whereas computing
all by-tuple answers without returning the probabilities is
in PTIME. Finally, we identify a large subclass of common
queries where returning all by-tuple answers with their pro-
babilities is still in PTIME.

We note that our complexity results are for ordinary data-
bases (i.e., deterministic data). Query answering on probabi-
listic data in itself can be #P-complete [33] and thus query
answering on probabilistic data with respect to p-mappings is
at least #P-hard. Extending our results for probabilistic data
is rather involving and we leave it for future work.

4.1 By-table query answering

In the case of by-table semantics, answering queries is
conceptually simple. Given a p-mapping pM = (S, T,m)
and an SPJ query Q, we can compute the certain answers of
Q under each of the mappings m ∈ m. We attach the proba-
bility Pr(m) to every certain answer under m. If a tuple is
an answer to Q under multiple mappings in m, then we add
up the probabilities of the different mappings.

Algorithm ByTable takes as input an SPJ query Q that
mentions the relations T1, . . . , Tl in theFROM clause. Assume
that we have the p-mapping pMi associated with the table
Ti . The algorithm proceeds as follows:

Step 1 We generate the possible reformulations of Q (a refor-
mulation query computes all certain answers when executed
on the source data) by considering every combination of the
form (m1, . . . ,ml), where mi is one of the possible mappings
in pMi . Denote the set of reformulations by Q′

1, . . . , Q′
k .

The probability of a reformulation Q′ = (m1, . . . ,ml) is
�l

i=1 Pr(mi).

Step 2 For each reformulation Q′, retrieve each of the unique
answers from the sources. For each answer obtained by
Q′

1 ∪ · · · ∪ Q′
k , its probability is computed by summing the

probabilities of the Q′’s in which it is returned.
Importantly, note that it is possible to express both steps

as an SQL query with grouping and aggregation. Therefore,
if the underlying sources support SQL, we can leverage their
optimizations to compute the answers.

With our restricted form of schema mapping, the algo-
rithm takes time polynomial in the size of the data and the
mappings. We thus have the following complexity result. We
give full proofs for results in this paper in the “Appendix”.

Theorem 1 Let pM be a schema p-mapping and let Q be
an SPJ query.

Answering Q with respect to pM in by-table semantics is
in PTIME in the size of the data and the mapping.

This result holds for more general mappings, as we explain
next.
GLAV mappings. The common formalism for schema map-
pings, GLAV, is based on expressions of the form

m : ∀x(ϕ(x) → ∃yψ(x, y)).

In the expression, ϕ is the body of a conjunctive query over
S̄ and ψ is the body of a conjunctive query over T̄ . A pair
of instances DS and DT satisfies a GLAV mapping m if for
every assignment of x in DS that satisfies ϕ there exists an
assignment of y in DT that satisfies ψ .

The schema mapping we have considered so far is a limited
form of GLAV mappings where each side of the mapping
involves only projection queries on a single table. However,
it is rather straightforward to extend the complexity results
for this limited form of schema mappings to arbitrary GLAV
mappings.

We define general p-mappings to be triples of the form
pGM = (S̄, T̄ , gm), where gm is a set {(gmi , Pr(gmi)) |
i ∈ [1, n]}, such that for each i ∈ [1, n], gmi is a gene-
ral GLAV mapping. The definition of by-table semantics for
such mappings is a simple generalization of Definition 6. The
following result holds for general p-mappings.

Theorem 2 Let pGM be a general p-mapping between a
source schema S̄ and a target schema T̄ . Let DS be an ins-
tance of S̄. Let Q be an SPJ query with only equality condi-
tions over T̄ . The problem of computing Qtable(DS) with
respect to pGM is in PTIME in the size of the data and the
mapping.

4.2 By-tuple query answering

To extend the by-table query-answering strategy to by-tuple
semantics, we would need to compute the certain answers for

123

Data integration with uncertainty

(a)
(b)

Fig. 4 Example 4 a Qtuple
1 (D) and b Qtuple

2 (D)

every mapping sequence generated by pM .
However, the number of such mapping sequences is exponen-
tial in the size of the input data. The following example shows
that for certain queries this exponential time complexity is
inevitable.

Example 4 Suppose that in addition to the tables in Exa-
mple 1, we also have U(city) in the source and V(hightech)
in the target. The p-mapping for V contains two possible
mappings: ({(city, hightech)}, 0.8) and (∅, 0.2).

Consider the following query Q, which decides if there
are any people living in a high-tech city.

Q: SELECT ‘true’
FROM T, V
WHERE T.mailing-addr = V.hightech

An incorrect way of answering the query is to first exe-
cute the following two sub-queries Q1 and Q2, then join the
answers of Q1 and Q2 and summing up the probabilities.

Q1: SELECT mailing-addr FROM T
Q2: SELECT hightech FROM V

Now consider the source instance D, where DS is shown in
Fig. 2a, and DU has two tuples (‘Mountain View’) and (‘Sun-
nyvale’). Figure 4a and b show Qtuple

1 (D) and Qtuple
2 (D). If

we join the results of Q1 and Q2, we obtain for the true tuple
the following probability: 0.94 ∗ 0.8 + 0.5 ∗ 0.8 = 1.152.
However, this is incorrect. By enumerating all consistent tar-
get tables, we in fact compute 0.864 as the probability. The
reason for this error is that on some target instance that is by-
tuple consistent with the source instance, the answers to both
Q1 and Q2 contain tuple (‘Sunnyvale’) and tuple (‘Mountain
View’). Thus, generating the tuple (‘Sunnyvale’) as an ans-
wer for both Q1 and Q2 and generating the tuple (‘Mountain
View’) for both queries are not independent events, and so
simply adding up their probabilities leads to incorrect results.

Indeed, we do not know a better algorithm to answer Q
than by enumerating all by-tuple consistent target instances
and then answering Q on each of them.

In fact, we show that in general, answering SPJ queries
in by-tuple semantics with respect to schema p-mappings is
hard.

Theorem 3 Let Q be an SPJ query and let pM be a schema
p-mapping. The problem of finding the probability for a by-
tuple answer to Q with respect to pM is #P-complete with

respect to data complexity and is in PTIME with respect to
mapping complexity.

The lower bound in Theorem 3 is proved by reducing the
problem of counting the number of variable assignments that
satisfy a bipartite monotone 2DNF Boolean formula to the
problem of finding the answers to Q.

In fact, the reason for the high complexity is exactly that
we are asking for the probability of the answer. The following
theorem shows that if we want to know only the possible by-
tuple answers, we can do so in polynomial time.

Theorem 4 Given an SPJ query and a schema p-mapping,
returning all by-tuple answers without probabilities is in
PTIME with respect to data complexity.

The key to proving the PTIME complexity is that we can
find all by-tuple answer tuples (without knowing the proba-
bility) by answering the query on the mirror target of the
source data. Formally, let DS be the source data and pM be
the schema p-mapping. The mirror target of DS with res-
pect to pM is defined as follows. If R is not involved in any
mapping, the mirror target contains R itself; if R is the tar-
get of pM = (S, T,m) ∈ pM , the mirror target contains
a relation R′ where for each source tuple tS of S and each
m ∈ m, there is a tuple tT in R′ that (1) is consistent with tS

and m and contains null value for each attribute that is not
involved in m, (2) contains an id column with the value of
the id column in tS (we assume the existence of identifier
attribute id for S and in practice we can use S’s key attributes
in place of id), and (3) contains a mapping column with the
identifier of m. Meanwhile, we slightly modify a query Q
into a mirror query Qm with respect to pM as follows: Qm

is the same as Q except that for each relation R that is the
target of a p-mapping in pM and occurs multiple times in
Q’s FROM clause, and for any of R’s two aliases R1 and R2

in the FROM clause, Q′ contains in addition the following
predicates: (R1.id 〈〉 R2.id OR R1.mapping=R2.mapping).

Lemma 1 Let pM be a schema p-mapping. Let Q be an SPJ
query and Qm be Q’s mirror query with respect to pM. Let
DS be the source database and DT be the mirror target of
DS with respect to pM.

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT) and t
does not contain null value.

The size of the mirror target is polynomial in the size of
the data and the p-mapping. The PTIME complexity bound
follows from the fact that answering the mirror query on the
mirror target takes only polynomial time.

GLAV mappings. Extending by-tuple semantics to arbitrary
GLAV mappings is much trickier than by-table semantics. It
would involve considering mapping sequences whose length
is the product of the number of tuples in each source table,

123

X. L. Dong et al.

and the results are much less intuitive. Hence, we postpone
by-tuple semantics to future work.

4.3 Two restricted cases

In this section we identify two restricted but common classes
of queries for which by-tuple query answering takes polyno-
mial time. While we do not have a necessary and sufficient
condition for PTIME complexity of query answering, we do
not know any other cases where it is possible to answer a
query in polynomial time.

In our discussion we refer to subgoals of a query. The
subgoals are tables that occur in the FROM clause of a query.
Hence, even if the same table occurs twice in the FROM
clause, each occurrence is a different subgoal.

Queries with a single p-mapping subgoal

The first class of queries we consider are those that include
only a single subgoal being the target of a p-mapping. Rela-
tions in the other subgoals are either involved in ordinary
mappings or do not require a mapping. Hence, if we only
have uncertainty with respect to one part of the domain, our
queries will typically fall in this class. We call such queries
non-p-join queries. The query Q in the motivating example
is an example non-p-join query.

Definition 9 (Non-p-join queries) Let pM be a schema
p-mapping and let Q be an SPJ query.

If at most one subgoal in the body of Q is the target of
a p-mapping in pM , we say Q is a non-p-join query with
respect to pM .

For a non-p-join query Q, the by-tuple answers of Q can
be generated from the by-table answers of Q over a set of
databases, each containing a single tuple in the source table.
Specifically, let pM = (S, T,m) be the single p-mapping
whose target is a relation in Q, and let DS be an instance of
S with d tuples. Consider the set of tuple databases T(DS) =
{D1, . . . , Dd}, where for each i ∈ [1, d], Di is an instance of
S and contains only the i th tuple in DS . The following lemma
shows that Qtuple(DS) can be derived from Qtable(D1), . . . ,

Qtable(Dd).

Lemma 2 Let pM be a schema p-mapping between S̄ and T̄ .
Let Q be a non-p-join query over T̄ and let DS be an instance
of S̄. Let (t, Pr(t)) be a by-tuple answer with respect to DS

and pM. Let T̄ (t) be the subset of T(DS) such that for each
D ∈ T̄ (t), t ∈ Qtable(D). The following two conditions
hold:

1. T̄ (t) �= ∅;
2. Pr(t) = 1 −�D∈T̄ (t),(t,p)∈Qtable(D)(1 − p).

In practice, answering the query for each tuple database
can be expensive. We next describe Algorithm NonPJoin,
which computes the answers for all tuple databases in one
step. The key of the algorithm is to distinguish answers
generated by different source tuples. To do this, we assume
there is an identifier attribute id for the source relation whose
values are concatenations of values of the key columns. We
now describe the algorithm in detail.

Algorithm NonPJoin takes as input a non-p-join query
Q, a schema p-mapping pM , and a source instance DS , and
proceeds in three steps to compute all by-tuple answers.

Step 1 Rewrite Q to Q′ such that it returns T .id in addi-
tion. Revise the p-mapping such that each possible mapping
contains the correspondence between S.id and T .id.

Step 2 Invoke ByTable with Q′, pM and DS . Note that each
generated result tuple contains the id column in addition to
the attributes returned by Q.

Step 3 Project the answers returned in Step 2 on Q’s returned
attributes. Suppose projecting t1, . . . , tn obtains the answer
tuple t , then the probability of t is 1 −�n

i=1(1 − Pr(ti)).
Note that Algorithm NonPJoin is different from Algo-

rithm ByTable in two ways. First, it considers an identi-
fier column of the source and so essentially it can answer
the query on all tuple databases parallelly. Second, whereas
ByTable combines the results from rewritten queries simply
by adding up the probabilities of each distinct tuple t , NonP-
Join needs to in addition compute 1 −�n

i=1(1 − Pr(ti)) for
each tuple ti projecting which obtains answer tuple t .

Example 5 Consider rewriting Q in the motivating example,
repeated as follows:

Q: SELECT mailing-addr FROM T

Step 1 rewrites Q into query Q′ by adding the id column:

Q’: SELECT id, mailing-addr FROM T

In Step 2, ByTable may generate the following SQL
query to compute by-table answers for Q′:
Qa: SELECT id, mailing-addr, SUM(pr)
FROM (
SELECT DISTINCT id, current-addr

AS mailing-addr, 0.5 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, permanent-addr

AS mailing-addr, 0.4 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, email-addr

AS mailing-addr, 0.1 AS pr
FROM S)
GROUP BY id, mailing-addr

123

Data integration with uncertainty

Step 3 then generates the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr
FROM Qa
GROUP BY mailing-addr

where for a set of probabilities pr1, . . . , prn , N O R
computes 1 −�n

i=1(1 − pri).

An analysis of Algorithm NonPJoin leads to the following
complexity result for non-p-join queries.

Theorem 5 Let pM be a schema p-mapping and let Q be a
non-p-join query with respect to pM.

Answering Q with respect to pM in by-tuple semantics is
in PTIME in the size of the data and the mapping.

Projected p-join queries

We now show that query answering can be done in polyno-
mial time for a class of queries, called projected p-join que-
ries, that include multiple subgoals involved in p-mappings.
In such a query, we say that a join predicate is a p-join predi-
cate with respect to a schema p-mapping pM , if at least one
of the involved relations is the target of a p-mapping in pM .
We define projected p-join queries as follows.

Definition 10 (Projected p-join query) Let pM be a schema
p-mapping and Q be an SPJ query over the target of pM . If
the following conditions hold, we say Q is a projected p-join
query with respect to pM :

– at least two subgoals in the body of Q are targets of
p-mappings in pM .

– for every p-join predicate, the join attribute (or an equiva-
lent attribute implied by the predicates in Q) is returned
in the SELECT clause.

Example 6 Consider the schema p-mapping in Example 4. A
slight revision of Q, shown as follows, is a projected-p-join
query.

Q’: SELECT V.hightech
FROM T, V
WHERE T.mailing-addr = V.hightech

Note that in practice, when joining data from multiple
tables in a data integration scenario, we typically project the
join attributes, thereby leading to projected p-join queries.

The key to answering a projected-p-join query Q is to
divide Q into multiple subqueries, each of which is a non-
p-join query, and compute the answer to Q from the answers
to the subqueries. We proceed by considering partitions of the
subgoals in Q. We say that a partitioning J̄ is a refinement
of a partitioning J̄ ′, denoted J̄ � J̄ ′, if for each partition
J ∈ J̄ , there is a partition J ′ ∈ J̄ ′, such that J ⊆ J ′. We

consider the following partitioning of Q, the generation of
which will be described in detail in the algorithm.

Definition 11 (Maximal p-join partitioning) Let pM be a
schema p-mapping. Let Q be an SPJ query and J̄ be a parti-
tioning of the subgoals in Q.

We say that J̄ is a p-join partitioning of Q, if (1) each
partition J ∈ J̄ contains at most one subgoal that is the
target of a p-mapping in pM , and (2) if neither subgoal in
a join predicate is involved in p-mappings in pM , the two
subgoals belong to the same partition.

We say that J̄ is a maximal p-join partitioning of Q, if there
does not exist a p-join partitioning J̄ ′, such that J̄ � J̄ ′.

For each partition J ∈ J̄ , we can define a query Q J as
follows. The FROM clause includes the subgoals in J . The
SELECT clause includes J ’s attributes that occur in (1) Q’s
SELECT clause or (2) Q’s join predicates that join subgoals
in J with subgoals in other partitions. The WHERE clause
includes Q’s predicates that contain only subgoals in J .
When J is a partition in a maximal p-join partitioning of
Q, we say that Q J is a p-join component of Q.

The following is the main lemma underlying our algo-
rithm. It shows that we can compute the answers of Q from
the answers to its p-join components.

Lemma 3 Let pM be a schema p-mapping. Let Q be a pro-
jected p-join query with respect to pM and let J̄ be a maxi-
mal p-join partitioning of Q. Let Q J1, . . . , Q Jn be the p-join
components of Q with respect to J̄ .

For any instance DS of the source schema of pM and
result tuple t ∈ Qtuple(DS), the following two conditions
hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈
Qtuple

J i (DS), such that t1, . . . , tn generate t when joined
together.

2. Let t1, . . . , tn be the above tuples. Then Pr(t) = �n
i=1

Pr(ti).

Lemma 3 leads naturally to the query-answering
algorithm ProjectedPJoin, which takes as input a
projected-p-join query Q, a schema p-mapping pM , and a
source instance DS , outputs all by-tuple answers, and pro-
ceeds in three steps.

Step 1 Generate maximum p-join partitions J1, . . . , Jn as
follows. First, initialize each partition to contain one subgoal
in Q. Then, for each join predicate with subgoals S1 and S2

that are not involved in p-mappings in pM , merge the parti-
tions that S1 and S2 belong to. Finally, for each partition that
contains no subgoal involved in pM , merge it with another
partition.

123

X. L. Dong et al.

Step 2 For each p-join partition Ji , i ∈ [1, n], generate the
p-join component Q Ji and invoke Algorithm NonPJoin with
Q Ji , pM and DS to compute answers for Q Ji .

Step 3 Join the results of Q J1, . . . , Q Jn . If an answer tuple t
is obtained by joining t1, . . . , tn , then the probability of t is
computed by �n

i=1 Pr(ti).
We illustrate the algorithm using the following example.

Example 7 Consider query Q′ in Example 6. Its two p-join
components are Q1 and Q2 shown in Example 4. Suppose
we compute Q1 with query Qu (shown in Example 5) and
compute Q2 with query Q′

u . We can compute by-tuple ans-
wers of Q′ as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr FROM Qu, Qu’
WHERE Qu.mailing-addr = Qu’.hightect

Since the number of p-join components is bounded by
the number of subgoals in a query, and for each of them we
invoke Algorithm NonPJoin, query answering for projected
p-join queries takes polynomial time.

Theorem 6 Let pM be a schema p-mapping and let Q be a
projected-p-join query with respect to pM.

Answering Q with respect to pM in by-tuple semantics is
in PTIME in the size of the data and the mapping.

Other SPJ queries

A natural question is whether the two classes of queries we
have identified are the only ones for which query answering
is in PTIME for by-tuple semantics. If Q contains multiple
subgoals that are involved in a schema p-mapping, but Q is
not a projected-p-join query, then Condition 1 in Lemma 3
does not hold and the technique for answering projected-p-
join queries do not apply any more. We do not know any
better algorithm to answer such queries than enumerating all
mapping sequences.

We believe that the complexity of the border case, where a
query joins two relations involved in p-mappings but does not
return the join attribute, is #P-hard, but currently it remains
an open problem.

5 Top-k query answering

In this section, we consider returning the top-k query ans-
wers, which are the k answer tuples with the top probabili-
ties. The main challenge in designing the algorithm is to only
perform the necessary reformulations at every step and halt
when the top-k answers are found. We first describe our algo-
rithm for by-table semantics. We then show the challenges
for by-tuple semantics and outline our solution.

5.1 Returning top-k by-table answers

Recall that in by-table query answering, the probability of
an answer is the sum of the probabilities of the reformulated
queries that generate the answer. Our goal is to reduce the
number of reformulated queries we execute. Our algorithm
proceeds in a greedy fashion: we execute queries in descen-
ding order of probabilities. For each tuple t , we maintain the
upper bound pmax (t) and lower bound pmin(t) of its proba-
bility. This process halts when we find k tuples whose pmin

values are higher than pmax of the rest of the tuples.
TopKByTable takes as input an SPJ query Q, a schema

p-mapping pM , an instance DS of the source schema, and
an integer k, and outputs the top-k answers in Qtable(DS).
The algorithm proceeds in three steps.

Step 1 Rewrite Q according to pM into a set of queries
Q1, . . . , Qn , each with a probability assigned in a similar
way as stated in Algorithm ByTable.

Step 2 Execute Q1, . . . , Qn in descending order of their pro-
babilities. Maintain the following measures:

– The highest probability, P Max , for the tuples that have
not been generated yet. We initialize P Max to 1; after
executing query Qi and updating the list of answers (see
third bullet), we decrease P Max by Pr(Qi);

– The threshold th determining which answers are poten-
tially in the top-k. We initialize th to 0; after executing Qi

and updating the answer list, we set th to the kth largest
pmin for tuples in the answer list;

– A list L of answers whose pmax is no less than th, and
bounds pmin and pmax for each answer in L . After exe-
cuting query Qi , we update the list as follows: (1) for
each t ∈ L and t ∈ Qi (DS), we increase pmin(t) by
Pr(Qi); (2) for each t ∈ L but t �∈ Qi (DS), we decrease
pmax (t) by Pr(Qi); (3) if P Max ≥ th, for each t �∈ L
but t ∈ Qi (DS), insert t to L , set pmin to Pr(Qi) and
pmax (t) to P Max .

– A list T of k tuples with top pmin values.

Step 3 When th > P Max and for each t �∈ T , th > pmax (t),
halt and return T .

Example 8 Consider Example 1 where we seek for top-1 ans-
wer. We answer the reformulated queries in order of Q1, Q2,

Q3. After answering Q1, for tuple (“Sunnyvale”) we have
pmin = 0.5 and pmax = 1, and for tuple (“Mountain View”)
we have the same bounds. In addition, P Max = 0.5 and
th = 0.5.

In the second round, we answer Q2. Then, for tuple (“Sun-
nyvale”) we have pmin = 0.9 and pmax = 1, and for tuple
(“Mountain View”) we have pmin = 0.5 and pmax = 0.6.
Now P Max = 0.1 and th = 0.9.

123

Data integration with uncertainty

Because th > P Max and th is above the pmax for the
(“Mountain View”) tuple, we can halt and return (“Sunny-
vale”) as the top-1 answer.

The next theorem states the correctness of ByTableTopK.

Theorem 7 For any schema mapping pM, SPJ query Q,
instance DS of the source schema of pM, and integer k, Algo-
rithm ByTableTopK correctly computes the top-k answers
in Qtable(DS).

Our algorithm differs from previous top-k algorithms in
the literature in two aspects. First, we execute the reformu-
lated queries only when necessary, so we can return the top-
k answers without executing all reformulated queries the-
reby leading to significant performance improvements. Fagin
et al. [13] have proposed several algorithms for finding ins-
tances with top-k scores, where each instance has m attributes
and the score of the instance is an aggregation over values
of these m attributes. However, these algorithms assume for
each attribute there exists a sorted list on its values, and they
access the lists in parallel. In our context, this would require
executing all reformulated queries upfront. Li et al. [24] have
studied computing top-k answers for aggregation and group-
by queries and optimizing query answering by generating
the groups incrementally. Although we can also compute
by-table answers using an aggregation query, this query is dif-
ferent from those considered in [24] in that theWHERE clause
contains a set of sub-queries rather than database tables. The-
refore, applying [24] here also requires evaluating all refor-
mulated queries at the beginning.

Second, whereas maintaining upper bounds and lower
bounds for instances has been explored in the literature, such
as in Fagin’s NRA (Non-Random Access) algorithm and in
[24], our algorithm is different in that it keeps these bounds
only for tuples that have already been generated by an execu-
ted reformulated query and that are potential top-k answers
(by judging if the upper bound is above the threshold th).

5.2 By-tuple top-k query answering

We next consider returning top-k answers in by-tuple seman-
tics. In general, we need to consider each mapping sequence
and answer the query on the target instance that is consistent
with the source and the mapping sequence. Algorithm TopK-
ByTable can be modified to compute top-k by-tuple answers
by deciding at runtime the mapping sequence to consider
next. However, for non-p-join queries and projected-p-join
queries, we can return top-k answers more efficiently. We
outline our method for answering non-p-join queries here.

For non-p-join queries the probability of an answer tuple t
to query Q cannot be expressed as a function of t’s probabili-
ties in executing reformulations of Q; rather, it is a function
of t’s probabilities in answering Q on each tuple database

of the source table. However, retrieving answers on a tuple
base is expensive. Algorithm NonPJoin provides a method
that computes by-tuple answers on the tuple databases in a
batch mode by first rewriting Q into Q′ by returning the id
column and then executing Q′’s reformulated queries. We
find top-k answers in a similar fashion. Here, after executing
each reformulated query, we need to maintain two answer
lists, one for Q and one for Q′, and compute pmin and pmax

for answers in different lists differently.

6 Representation of probabilistic mappings

Thus far, a p-mapping was represented by listing each of its
possible mappings, and the complexity of query answering
was polynomial in the size of that representation. Such a
representation can be quite lengthy since it essentially enu-
merates a probability distribution by listing every combina-
tion of events in the probability space. Hence, an interesting
question is whether there are more concise representations of
p-mappings and whether our algorithms can leverage them.

We consider three representations that can reduce the size
of the p-mapping exponentially. In Sect. 6.1 we consider a
representation in which the attributes of the source and target
tables are partitioned into groups and p-mappings are speci-
fied for each group separately. We show that query answering
can be done in time polynomial in the size of the representa-
tion. In Sect. 6.2 we consider probabilistic correspondences,
where we specify the marginal probability of each attribute
correspondence. However, we show that such a represen-
tation can only be leveraged in limited cases. Finally, we
consider Bayes Nets, the most common method for conci-
sely representing probability distributions, in Sect. 6.3, and
show that even though some p-mappings can be represented
by them, query answering does not necessarily benefit from
the representation.

6.1 Group probabilistic mapping

In practice, the uncertainty we have about a p-mapping can
often be represented as a few localized choices, especially
when schema mappings are created by semi-automatic met-
hods. To represent such p-mappings more concisely, we can
partition the source and target attributes and specify
p-mappings for each partition.

Definition 12 (Group p-mapping) An n-group p-mapping
g pM is a triple (S, T, pM), where

– S is a source relation schema and S1, . . . , Sn is a set of
disjoint subsets of attributes in S;

– T is a target relation schema and T1, . . . , Tn is a set of
disjoint subsets of attributes in T ;

123

X. L. Dong et al.

(a)
(b) (c)

Fig. 5 Example 9 the p-mapping in a is equivalent to the 2-group p-mapping in b and c

– pM is a set of p-mappings {pM1, . . . , pMn}, where for
each 1 ≤ i ≤ n, pMi is a p-mapping between Si and Ti .

The semantics of an n-group p-mapping g pM = (S, T,
pM) is a p-mapping that includes the Cartesian product
of the mappings in each of the pMi ’s. The probability of
the mapping composed of m1 ∈ pM1, . . . ,mn ∈ pMn is
�n

i=1 Pr(mi).

Example 9 Figure 5a shows p-mapping pM between the
schemas S(a, b, c) and T (a′, b′, c′). Figure 5b and c show
two independent mappings that together form a 2-group
p-mapping equivalent to pM .

Note that a group p-mapping can be considerably more
compact than an equivalent p-mapping. Specifically, if each
pMi includes li mappings, then a group p-mapping can des-
cribe�n

i=1li possible mappings with
∑n

i=1 li sub-mappings.
The important feature of n-group p-mappings is that query
answering can be done in time polynomial in their size.

Theorem 8 Let g pM be a schema group p-mapping and let
Q be an SPJ query. The mapping complexity of answering Q
with respect to g pM in both by-table semantics and by-tuple
semantics is in PTIME.

Note that as n grows, fewer p-mappings can be represented
with n-group p-mappings. Formally, suppose we denote by
Mn

ST the set of all n-group p-mappings between S and T ,
then:

Proposition 1 For each n ≥ 1, Mn+1
ST ⊂ Mn

ST .

We typically expect that when possible, a mapping would
be given as a group p-mapping. The following theorem shows
that we can find the best group p-mapping for a given
p-mapping in polynomial time.

Proposition 2 Given a p-mapping pM, we can find in poly-
nomial time in the size of pM the maximal n and an n-group
p-mapping g pM, such that g pM is equivalent to pM.

6.2 Probabilistic correspondences

The second representation we consider, probabilistic corres-
pondences, represents a p-mapping with the marginal pro-
babilities of attribute correspondences. This representation

(a) (b)

Fig. 6 Example 10 the p-mapping in a corresponds to the
p-correspondence in b

is the most compact one as its size is proportional to the
product of the schema size of S and the schema size of T .

Definition 13 (Probabilistic correspondences) A probabi-
listic correspondence mapping (p-correspondence) is a triple
pC = (S, T, c), where S = 〈s1, . . . , sm〉 is a source relation
schema, T = 〈t1, . . . , tn〉 is a target relation schema, and

– c is a set {(ci j ,Pr(ci j))|i ∈ [1,m], j ∈ [1, n]}, where
ci j = (si , t j) is an attribute correspondence, and
Pr(ci j) ∈ [0, 1];

– for each i ∈ [1,m],∑n
j=1 Pr(ci j) ≤ 1;

– for each j ∈ [1, n],∑m
i=1 Pr(ci j) ≤ 1.

Note that for a source attribute si , we allow

n∑

j=1

Pr(ci j) < 1.

This is because in some of the possible mappings, si may
not be mapped to any target attribute. Similarly, for a target
attribute t j , we allow

m∑

i=1

Pr(ci j) < 1.

From each p-mapping, we can infer a p-correspondence by
calculating the marginal probabilities of each attribute corres-
pondence. Specifically, for a p-mapping pM = (S, T,m),
we denote by pC(pM) the p-correspondence where each
marginal probability is computed as follows:

Pr(ci j) =
∑

ci j ∈m,m∈m

Pr(m)

However, as the following example shows, the relationship
between p-mappings and p-correspondences is many-to-one.

123

Data integration with uncertainty

Example 10 The p-correspondence in Fig. 6b is the one com-
puted for both the p-mapping in Fig. 6a and the p-mapping
in Fig. 5a.

Given the many-to-one relationship, the question is when
it is possible to compute the correct answer to a query based
only on the p-correspondence. That is, we are looking for
a class of queries Q̄, called p-mapping independent queries,
such that for every Q ∈ Q̄ and every database instance DS , if
pC(pM1) = pC(pM2), then the answer of Q with respect
to pM1 and DS is the same as the answer of Q with respect
to pM2 and DS . Unfortunately, this property holds for a very
restricted class of queries, defined as follows:

Definition 14 (Single-attribute query) Let pC = (S, T, c)
be a p-correspondence. An SPJ query Q is said to be a single-
attribute query with respect to pC if T has one single attribute
occurring in the SELECT and WHERE clauses of Q. This
attribute of T is said to be a critical attribute.

Theorem 9 Let pC be a schema p-correspondence, and Q
be an SPJ query. Then, Q is p-mapping independent with
respect to pC if and only if for each pC ⊆ pC, Q is a
single-attribute query with respect to pC.

Example 11 Continuing with Example 10, consider the
p-correspondence pC in Fig. 6b and the following two que-
ries Q1 and Q2. Query Q1 is mapping independent with
respect to pC , but Q2 is not.

Q1: SELECT T.a FROM T,U WHERE T.a=U.a’
Q2: SELECT T.a, T.c FROM T

Theorem 9 simplifies query answering for p-mapping
independent queries. Wherever we needed to consider every
possible mapping in previous algorithms, we consider only
every attribute correspondence for the critical attribute.

Corollary 1 Let pC be a schema p-correspondence, and
Q be a p-mapping independent SPJ query with respect to
pC. The mapping complexity of answering Q with respect to
pC in both by-table semantics and by-tuple semantics is in
PTIME.

The result in Theorem 9 can be generalized to cases where
we know the p-mapping is an n-group p-mapping. Specifi-
cally, as long as Q includes at most a single attribute in each
of the groups in the n-group p-mapping, query answering can
still be done with the correspondence mapping. We omit the
details of this generalization.

6.3 Bayes Nets

Bayes Nets are a powerful mechanism for concisely repre-
senting probability distributions and reasoning about proba-
bilistic events [29]. The following example shows how Bayes
Nets can be used in our context.

Example 12 Consider two schemas S = (s1, . . . , sn, s′
1, . . . ,

s′
n) and T = (t1, . . . , tn). Consider the p-mapping pM =
(S, T,m), which describes the following probability distri-
bution: if s1 maps to t1 then it is more likely that {s2, . . . , sn}
maps to {t2, . . . , tn}, whereas if s′

1 maps to t1 then it is more
likely that {s′

2, . . . , s′
n} maps to {t2, . . . , tn}.

We can represent the p-mapping using a Bayes-Net as
follows. Let c be an integer constant. Then,

1. Pr((s1, t1)) = Pr((s′
1, t1)) = 1/2;

2. for each i ∈ [1, n], Pr((si , ti)|(s1, t1)) = 1 − 1
c and

Pr((s′
i , ti)|(s1, t1)) = 1

c ;
3. for each i ∈ [1, n], Pr((si , ti)|(s′

1, t1)) = 1
c and

Pr((s′
i , ti)|(s′

1, t1)) = 1 − 1
c .

Since the p-mapping contains 2n possible mappings, the
original representation would take space O(2n); however,
the Bayes-Net representation takes only space O(n).

Although the Bayes-Net representation can reduce the
size exponentially for some p-mappings, this conciseness
may not help reduce the complexity of query answering. In
Example 12, a query that returns all attributes in S will have
2n answer tuples in by-table semantics and enumerating all
these answers already takes exponential time in the size of
pM’s Bayes-Net representation.

7 Probabilistic data exchange

In this section we consider the use of probabilistic schema
mappings in another common form of data integration,
namely, data exchange. In doing so, we establish a close
relationship between probabilistic mappings and probabilis-
tic databases.

Unlike virtual data integration, in data exchange our goal
is to create an instance of the target schema, given instances
of the source schema. As discussed in previous work on data
exchange [11], our goal is to create the core universal solu-
tion, which is an instance of the target schema that is minimal
and from which we can derive all and only the certain answers
to a query. In our context, we show that we can create a pro-
babilistic database that serves as the core universal solution.
Probabilistic databases. We begin by briefly reviewing pro-
babilistic databases (the reader is referred to [33] for further
details).

A probabilistic database (p-database) pD over a schema
R̄ is a set {(D1, Pr(D1)), . . . , (Dn, Pr(Dn))}, such that

– for i ∈ [1, n], Di is an instance of R̄, and for every i, j ∈
[1, n], i �= j ⇒ Di �= D j ;

– Pr(Di) ∈ [0, 1] and
∑n

i=1 Pr(Di) = 1.

123

X. L. Dong et al.

Answers to queries over p-databases have probabilities
associated with them. Specifically, let Q be a query over
pD, and let t be a tuple. We denote by D̄(t) the subset of
pD such that for each D ∈ D̄(t), t ∈ Q(D). Let p =
∑

D∈D(t) Pr(D). If p > 0, we call (t, p) a possible tuple in
the answer of Q on pD.

Given a query Q and a p-database pD, we denote by
Q(pD) the set of all possible tuples in the answer of Q on
pD. We next show that data-exchange solutions can be repre-
sented as p-databases.

Data-exchange solutions. The data-exchange problem for a
p-mapping pM = (S, T,m) and an instance DS of S is
to find an instance of T that is consistent with DS and pM .
We distinguish between by-table solutions and by-tuple solu-
tions.

Definition 15 (By-table solution) Let pM = (S, T,m) be a
p-mapping and DS be an instance of S.

A p-database pDT ={(D1, Pr(D1)), . . . , (Dn, Pr(Dn))}
is a by-table solution for DS under pM , if for each i ∈ [1, n],
there exists a subset mi ⊆ m, such that

– for each m ∈ mi , Di is by-table consistent with DS and
m;

– Pr(Di) = ∑
m∈mi

Pr(m);
– m̄1, . . . , m̄n form a partition of m.

Intuitively, for each possible mapping m, there should be
a target instance that is consistent with the source instance
and m, and the probability of the target instance should be
the same as the probability of m. However, there can be a set
of possible mappings m̄i such that there exists a target ins-
tance, Di , that is consistent with the source instance and each
of the mapping in m̄i ; hence, the probability of Di should be
the sum of the probabilities of the mappings in m̄i . Finally,
the solution should have one and only one target for each
possible mapping, so m̄1, . . . , m̄n should form a partition of
the mappings in m. In the definition for by-tuple semantics,
the same intuition applies, except that we need to consider
subsets of sequences.

Definition 16 (By-tuple solution) Let pM = (S, T,m) be a
p-mapping and DS be an instance of S with d tuples.

A p-database pDT ={(D1, Pr(D1)), . . . , (Dn, Pr(Dn))}
is a by-tuple solution for DS under pM if for each i ∈ [1, n],
there exists a subset seqi ⊆ seqd(pM), such that

– for each seq ∈ seqi , Di is by-tuple consistent with DS

and seq;
– Pr(Di) = ∑

seq∈seqi
Pr(seq);

– seq1, . . . , seqn form a partition of seqd(pM).

We illustrate by-table solutions and by-tuple solutions in
the following example.

Example 13 Consider the p-mapping pM and the source ins-
tance DS in Example 1 (repeated in Fig. 7a, b). Figure 7c
shows a by-table solution for DS under pM . Figure 7d and e
show two by-tuple solutions for DS under pM . Note that
in Fig. 7d, the first possible database is consistent with both
sequence 〈m1,m1〉 and 〈m1,m2〉, so its probability is 0.5 ∗
0.5 + 0.5 ∗ 0.4 = 0.45.

Core universal solution. Among all solutions, we would like
to identify the core universal solution, because it is unique
up to isomorphism and because we can use it to find all the
answers to a query. We define the core universal solution for
p-databases, but first we need to define homomorphism and
isomorphism on such databases.

The definition of homomorphism on p-databases is an
extension of homomorphism on traditional databases, which
we review now. Let C be the set of all constant values that
occur in source instances, called constants, and let V be an
infinite set of variables, called labeled nulls. C ∩ V = ∅. Let
D be a database instance. We denote by V (D) ⊆ V the set
of labeled nulls occurring in D.

Definition 17 (Instance homomorphism) Let DR and D′
R be

two instances of schema R with values in C ∪ V .
A homomorphism h : DR → D′

R is a mapping from
C ∪ V (DR) to C ∪ V (D′

R) such that

– h(c) = c for every c ∈ C;
– for every tuple t = (v1, . . . , vn) in DR , we have that

h(t) = (h(v1), . . . , h(vn)) is in D′
R .

We next extend the definition of homomorphism for tra-
ditional databases to homomorphism for p-databases. Consi-
der two p-databases pD and pD′. Intuitively, for pD to be
homomorphic to pD′, each possible database in pD should
be homomorphic to some possible database in pD′. However,
one possible database in pD can be homomorphic to several
possible databases in pD′. We thus partition the databases
in pD′ and each database in pD should be homomorphic to
the databases in one partition of pD′. We note that it can also
happen that multiple databases in pD are homomorphic to
the same possible database in pD′. Our definition requires
that each database in pD is homomorphic to at least one dis-
tinct database in pD′ and so for pD to be homomorphic to
pD′, the number of databases in pD should be no more than
that in pD′. As we will see in the definition of core universal
solution, with our definition of homomorphism, the core uni-
versal solution would be the solution with the least number
of possible databases.

Definition 18 (Homomorphism of p-databases) Let pD =
{(Di , Pr(Di)) | i ∈ [1, n]} and pD′ = {(D′

i , Pr(D′
i)) | i ∈

123

Data integration with uncertainty

(a)

(b)

(c)

(d)
(e)

Fig. 7 The running example: a a probabilistic schema mapping between S and T ; b a source instance DS ; c a by-table solution pD1 for DS under
pM ; d a by-tuple solution pD2 for DS under pM ; e another by-tuple solution pD3 for DS under pM . In c–e, O1, O2, E1, and E2 are labeled nulls

[1, l]} be two p-databases of the same schema. Let P(pD′)
be the powerset of the possible databases in pD′.

A homomorphism h : pD → pD′ is a mapping from pD
to P(pD′), such that

– for every D ∈ pD and D′ ∈ h(D), there exists a homo-
morphism g : D → D′;

– for every D ∈ pD, Pr(D) = ∑
D′∈h(D) Pr(D′);

– h(D1), . . . , h(Dn) form a partition of pD′.

According to this definition, in Fig. 7, p-database pD2 is
homomorphic to pD3, but the homomorphism in the opposite
direction does not hold.

We next define isomorphism for p-databases, where we
require one-to-one mappings between possible databases.

Definition 19 (Isomorphism of p-databases) Let pD =
{(Di , Pr(Di)) | i ∈ [1, n]} and pD′ = {(D′

i , Pr(D′
i)) |

i ∈ [1,m]} be two p-databases of the same schema.
An isomorphism i : pD → pD′ is a bijective mapping

from pD to pD′, such that if h(D) = D′,

– there exists an isomorphism g : D → D′;
– Pr(D) = Pr(D′).

We can now define core universal solutions.

123

X. L. Dong et al.

Fig. 8 Disjunctive P-database
that is equivalent to pD2 in
Fig. 7d

Definition 20 (Core universal solution) Let pM =(S, T,m)
be a p-mapping and DS be an instance of S.

A p-database instance pDT of T is called a by-table (resp.
by-tuple) universal solution for DS under pM , if (1) pDT is
a by-table (resp. by-tuple) solution for DS , and (2) for every
by-table (resp. by-tuple) solution pD′

T for DS , there exists a
homomorphism h : pDT → pD′

T .
Further, pDT is called a by-table (resp. by-tuple) core

universal solution for DS if for each possible database DT ∈
pDT , there is no homomorphism from DT to a proper subset
of tuples in DT .

Intuitively, a core universal solution is the smallest and
most general solution. In Example 13, pD1 is the core uni-
versal solution in by-table semantics and pD2 is the core
universal solution in by-tuple semantics.

The following theorem establishes the key properties of
core universal solutions in our context.

Theorem 10 Let pM = (S, T,m) be a p-mapping and DS

be an instance of S.

1. There is a unique by-table core universal solution and
a unique by-tuple core universal solution up to isomor-
phism for DS with respect to pM.

2. Let Q be a conjunctive query over T . We denote by
Q(pD) the results of answering Q on pD and discar-
ding all answer tuples containing null values (labeled
nulls). Then,

Qtable(DS) = Q(pDtable
T).

Similarly, let pDtuple
T be the by-tuple core universal solu-

tion for DS under pM. Then,

Qtuple(DS) = Q(pDtuple
T).

Complexity of data exchange. Recall that query answering is
in PTIME in by-table semantics, and in #P in by-tuple seman-
tics in general. However, data exchange in both semantics is
in PTIME in the size of the data and in the size of the mapping.
The complexity of computing the core universal solution is
established by the following theorem:

Theorem 11 Let pM = (S, T,m) be a p-mapping and DS

be an instance of S.

Generating the by-table or by-tuple core universal solu-
tion for DS under pM takes polynomial time in the size of
the data and the mapping.

For by-table semantics the proof is rather straightforward.
For by-tuple semantics the proof requires a special represen-
tation of p-databases, called disjunctive p-database.

Definition 21 (Disjunctive p-database) Let R be a relation
schema where there exists a set of attributes that together
form the key of the relation. Let pD∨

R be a set of tuples of R,
each attached with a probability.

We say that pD∨
R is a disjunctive p-database if for each

key value that occurs in pD∨
R , the probabilities of the tuples

with this key value sum up to 1.

In a disjunctive p-database, we consider tuples with the
same key value as disjoint and those with different key values
as independent. Formally, let key1, . . . , keyn be the set of all
distinct key values in pD∨

R . For each i ∈ [1, n], we denote by
di the number of tuples whose key value is keyi . Then, with
a set of �n

i=1di tuples, pD∨
R can define a set of �n

i=1di pos-
sible databases, where each possible database (D, Pr(D))
contains n tuples t1, . . . , tn , such that (1) for each i ∈ [1, n],
the key value of ti is keyi ; and (2) Pr(D) = �n

i=1 Pr(ti).
Figure 8 shows the disjunctive p-database that is equivalent
to pD2 in Fig. 7d.

Theorem 11 is based on the following lemma.

Lemma 4 Let pM = (S, T,m) be a p-mapping and DS be
an instance of S.

The by-tuple core universal solution for DS under pM
can be represented as a disjunctive p-database.

The complexity of answering queries over the core univer-
sal solutions is the same as that of the corresponding results
for probabilistic databases. Specifically, the following theo-
rem follows from [31].

Theorem 12 Let Q be a conjunctive query.

– Let pD be a p-database instance. Computing Q(pD) is
in PTIME in the size of the data.

– Let pD∨ be a disjunctive p-database instance. Compu-
ting Q(pD∨) is #P-complete in the size of the data.

Finally, we note that when the p-mapping is a group
p-mapping, we can compute the core universal solution in

123

Data integration with uncertainty

time that is polynomial in the size of the data and in the size
of the group p-mapping by representing the solution as a set
of p-databases.

GLAV mappings. The complexity results for data exchange
under our limited form of p-mappings carry over to GLAV
mappings. For by-table semantics, generating the core
universal solution takes polynomial time; for by-tuple seman-
tics, defining the core universal solution is tricky and we leave
it for future work.

Theorem 13 Let pG M be a GLAV p-mapping between a
source schema S̄ and a target schema T̄ . Let DS be an ins-
tance of S̄.

Generating the by-table core universal solution for DS

under pM takes polynomial time in the size of the data and
the mapping.

8 Composition and inversion

Composition and inversion of mappings have received signi-
ficant attention recently [5,10,12,26] because they are fun-
damental operations on mappings and they are important for
data exchange, integration and peer data management. In this
section, we study composition and inversion of probabilistic
mappings. We show that probabilistic mappings are closed
under composition but not under inversion, and we can com-
pose two p-mappings in polynomial time.
Composition. Intuitively, composing two p-mappings
derives a p-mapping between the source schema of the first
p-mapping and the target schema of the second p-mapping,
such that the composition p-mapping has the same effect
as applying the two p-mappings successively. We formally
define mapping compositions as follows.

Definition 22 (Composition of p-mappings) Let pM1 =
(R, S,m1) and pM2 = (S, T,m2) be two p-mappings.

We call pM = (R, T,m) a by-table (resp. by-tuple) com-
position of pM1 and pM2, denoted by pM = pM1 ◦ pM2,
if for each DR of R and DT of T , DT is by-table (resp. by-
tuple) consistent with DR with probability p under pM , if
and only if there exists a set of possible databases D̄S of S,
such that

– for each D ∈ D̄S , D is by-table (resp. by-tuple) consistent
with DR with probability p1(D) under pM1;

– for each D ∈ D̄S , DT is by-table (resp. by-tuple)
consistent with D with probability p2(D) under pM2;

– p = ∑
D∈D̄S

p1(D) · p2(D).

When we have two p-mappings and need to apply them
successively, a natural thought is to compute their composi-
tion and apply the result mapping directly. Indeed, the fol-
lowing theorem shows that for any two p-mappings, there

is a unique composition p-mapping and we can generate it
in polynomial time. Thus, the above strategy is feasible and
efficient.

Theorem 14 Let pM1 = (R, S,m1) and pM2 = (S, T,m2)

be two p-mappings. Between R and T there exists a unique
p-mapping, pM, that is the composition of pM1 and pM2

in both by-table and by-tuple semantics and we can generate
pM in polynomial time.

Whereas probabilistic mappings in general are closed
under composition, the following theorem shows that n-
group p-mappings are not closed under composition when
n > 1.

Theorem 15 N-group (n > 1) p-mappings are not closed
under mapping composition.

Inversion. The intuition for inverse mappings is as follows: if
we compose a p-mapping, pM , and its inverse mapping, we
obtain an identity mapping, which deterministically maps
each attribute to itself. Given a schema R, we denote the
identity p-mapping for R as I M(R).

Definition 23 (Inversion of p-mapping) Let pM =(S, T,m)
be a p-mapping. We say pM ′ = (T, S,m′) is an inverse of
pMST , if pM ◦ pM ′ = IM(S).

Note that our definition of inversion corresponds to global
inverse in [10], which can be applied to the class of all source
instances. In [10] Fagin shows that for a traditional determi-
nistic mapping to have a global inverse, it needs to satisfy
the unique solutions property; that is, no two distinct source
instances have the same set of solutions. In our context, as
shown in the following theorem, only p-mappings in a very
limited form have inverse p-mappings but the vast majority
of p-mappings as illustrated in this paper do not have inverse
p-mappings.

Theorem 16 Let pM = (S, T,m) be a p-mapping. Then,
pM has an inverse p-mapping if and only if

– m contains a single possible mapping (m, 1);
– each attribute in S is involved in an attribute correspon-

dence in m.

9 Broader classes of mappings

In this section we briefly show how our results can be exten-
ded to capture three common practical extensions to our map-
ping language.

Complex mappings. Complex mappings map a set of attri-
butes in the source to a set of attributes in the target. For

123

X. L. Dong et al.

example, we can map the attribute address to the concate-
nation of street, city, and state.

Formally, a set correspondence between S and T is a
relationship between a subset of attributes in S and a sub-
set of attributes in T . Here, the function associated with the
relationship specifies a single value for each of the target
attributes given a value for each of the source attributes.
Again, the actual functions are irrelevant to our discussion. A
complex mapping is a triple (S, T, cm), where cm is a set
of set correspondences, such that each attribute in S or T
is involved in at most one set correspondence. A complex
p-mapping is of the form pCM = {(cmi , Pr(cmi)) | i ∈
[1, n]}, where

∑n
i=1 Pr(cmi) = 1.

Theorem 17 Let pC M be a complex schema p-mapping bet-
ween schemas S̄ and T̄ . Let DS be an instance of S̄.

1. Let Q be an SPJ query over T̄ . The data complexity and
mapping complexity of computing Qtable(DS) with res-
pect to pC M are PTIME. The data complexity of com-
puting Qtuple(DS)with respect to pC M is #P-complete.
The mapping complexity of computing Qtuple(DS) with
respect to pC M is in PTIME.

2. Generating the by-table or by-tuple core universal solu-
tion for DS under pC M takes polynomial time in the size
of the data and the mapping.

Union mapping. Union mappings specify relationships
such as both attribute home-address and attribute office-
address can be mapped to address. Formally, a union map-
ping is a triple (S, T, m̄), where m̄ is a set of mappings
between S and T . Given a source relation DS and a target
relation DT , we say DS and DT are consistent with respect
to the union mapping if for each source tuple t and m ∈ m̄,
there exists a target tuple t ′, such that t and t ′ satisfy m. A
union p-mapping is of the form pU M = {(m̄i , Pr(m̄i)) |
i ∈ [1, n]}, where

∑n
i=1 Pr(m̄i) = 1.

The results in this paper carry over, except that for by-
tuple data exchange, we need a new representation for the
core universal solution.

Theorem 18 Let pUM be a union schema p-mapping bet-
ween a source schema S̄ and a target schema T̄ . Let DS be
an instance of S̄.

1. Let Q be a conjunctive query over T̄ . The problem of
computing Qtable(DS)with respect to pUM is in PTIME
in the size of the data and the mapping; the problem of
computing Qtuple(DS)with respect to pUM is in PTIME
in the size of the mapping and #P-complete in the size of
the data.

2. Generating the by-table or by-tuple core universal solu-
tion for DS under pUM takes polynomial time in the size
of the data and the mapping.

Conditional mappings. In practice, our uncertainty is often
conditioned. For example, we may want to state that daytime-
phone maps to work-phone with probability 60% if age
≤ 65, and maps to home-phone with probability 90% if
age > 65.

We define a conditional p-mapping as a set cpM =
{(pM1,C1), . . . , (pMn,Cn)}, where pM1, . . . , pMn are
p-mappings, and C1, . . . ,Cn are pairwise disjoint conditions.
Intuitively, for each i ∈ [1, n], pMi describes the probability
distribution of possible mappings when condition Ci holds.
Conditional mappings make more sense for by-tuple seman-
tics. The following theorem shows that our results carry over
to such mappings.

Theorem 19 Let cpM be a conditional schema p-mapping
between S̄ and T̄ . Let DS be an instance of S̄.

1. Let Q be an SPJ query over T̄ . The problem of computing
Qtuple(DS) with respect to cpM is in PTIME in the size
of the mapping and #P-complete in the size of the data.

2. Generating the by-tuple core universal solution for DS

under cpM takes linear time in the size of the data and
the mapping.

10 Related work

We are not aware of any previous work studying the seman-
tics and properties of probabilistic schema mappings.
Florescu et al. [14] were the first to advocate the use of pro-
babilities in data integration. Their work used probabilities to
model (1) a mediated schema with overlapping classes (e.g.,
DatabasePapers and AIPapers), (2) source descriptions sta-
ting the probability of a tuple being present in a source, and
(3) overlap between data sources. While these are impor-
tant aspects of many domains and should be incorporated
into a data integration system, our focus here is different.
Magnani and Montesi [27] have empirically shown that top-k
schema mappings can be used to increase the recall of a data
integration process and Gal [15] described how to generate
top-k schema matchings by combining the matching results
generated by various matchers. The probabilistic schema
mappings we propose are different as it contains all pos-
sible schema mappings and has probabilities on these map-
pings to reflect the likelihood that each mapping is correct.
Nottelmann and Straccia [28] proposed generating proba-
bilistic schema matchings that capture the uncertainty in
each matching step. The probabilistic schema mappings we
consider in addition takes into consideration various com-
binations of attribute correspondences and describe a distri-
bution of possible schema mappings where the probabilities
of all mappings sum up to 1. Finally, De Rougement and
Vieilleribiere [7] considered approximate data exchange in

123

Data integration with uncertainty

that they relaxed the constraints on the target schema, which
is a different approach from ours.

There has been a flurry of activity around probabilistic and
uncertain databases lately [4,3,6,33]. Our intention is that a
data integration system will be based on a probabilistic data
model, and we leverage concepts from that work as much
as possible. We also believe that uncertainty and lineage are
closely related, in the spirit of [4], and that relationship will
play a key role in data integration. We leave exploring this
topic to future work.

11 Conclusions and future work

We introduced probabilistic schema mappings, which are a
key component of data integration systems that handle uncer-
tainty. In particular, probabilistic schema mappings enable us
to answer queries on heterogeneous data sources even if we
have only a set of candidate mappings that may not be pre-
cise. We identified two possible semantics for such mappings,
by-table and by-tuple, and presented query answering algo-
rithms and computational complexity for both semantics. We
also considered concise encoding of probabilistic mappings,
with which we are able to improve the efficiency of query
answering. Finally, we studied the application of probabi-
listic schema mappings in the context of data exchange and
extended our definition to more powerful schema mapping
languages to show the extensibility of our approach.

We are currently working on several extensions to this
work. First, we have built a system that automatically creates
a mediated schema from a set of given data sources. As
an intermediate step in doing so, we create probabilistic
schema mappings between the data sources and several can-
didate mediated schemas. We use these mappings to choose
a mediated schema that appears to be the best fit.

Second, to employ probabilistic mappings in resolving
heterogeneity at the schema level, we must have a good
method of generating probabilities for the mappings. This
is possible as techniques for semi-automatic schema map-
ping are often based on Machine Learning techniques that at
their core compute the confidence of correspondences they
generate. However, such confidence is meant more as a ran-
king mechanism than true probabilities between candidates
and is associated with attribute correspondences rather than
candidate mappings. We plan to study how to generate from
them probabilities for candidate mappings.

Third, we would like to reason about the uncertainty in
schema mappings in order to improve the schema mappings.
Specifically, by analyzing the probabilities of the candidate
mappings, we would like to find the critical parts (i.e., attri-
bute correspondences) where it is most beneficial to expand
more resources (human or otherwise) to improve schema
mapping.

Finally, we would like to extend our current results to
probabilistic data and probabilistic queries and build a full-
fledged data integration system that can handle uncertainty
at various levels. Studying the theoretical underpinning of
probabilistic mappings is the first step towards building such
a system. In addition, we need to extend the current work in
the community on probabilistic databases [33] to study how
to efficiently answer queries in the presence of uncertainties
in schemas and in data, and study how to translate a keyword
query into structured queries by exploiting evidence obtai-
ned from the existing data and users’ search and querying
patterns.

Appendix: Proofs

Theorem 1 Let pM be a schema p-mapping and let Q be
an SPJ query. Answering Q with respect to pM in by-table
semantics is in PTIME in the size of the data and the
mapping.

Proof It is trivial that Algorithm ByTable computes all by-
table answers. We now consider its time complexity by exa-
mining the time complexity of each step.

Step 1 Assume for each target relation Ti , i ∈ [1, l], the
involved p-mapping contains ni possible mappings. Then,
the number of reformulated queries is �l

i=1ni , polynomial
in the size of the mapping.

Given the restricted class of mappings we consider, we can
reformulate the query as follows. For each of Ti ’s attributes
t , if there exists an attribute correspondence (S.s, T .t) in mi ,
we replace t everywhere with s; otherwise, the reformulated
query returns an empty result. Let |Q| be the size of Q. Thus,
reformulating a query takes time O(|Q|), and the size of the
reformulated query does not exceed the size of Q.

Therefore, Step 1 takes time O(�l
i=1ni · |Q|), which is

polynomial in the size of the p-mapping and does not depend
on the size of the data.

Step 2 Answering each reformulated query takes polynomial
time in the size of the data and the number of answer tuples is
polynomial in the size of the data. Because there is a polyno-
mial number of answer tuples and each occurs in the answers
of no more than �l

i=1ni queries, summing up the probabili-
ties for each answer tuple takes time O(�l

i=1ni). Thus, Step
2 takes polynomial time in the size of the mapping and the
data. ��
Theorem 2 Let pGM be a general p-mapping between a
source schema S̄ and a target schema T̄ . Let DS be an ins-
tance of S̄. Let Q be an SPJ query with only equality condi-
tions over T̄ .

The problem of computing Qtable(DS) with respect to
pGM is in PTIME in the size of the data and the mapping.

123

X. L. Dong et al.

Proof We proceed in two steps to return all by-table ans-
wers. In the first step, for each gmi , i ∈ [1, n], we answer Q
according to gmi on DS . The certain answer with regard to
gmi has probability Pr(gmi). SPJ queries with only equality
conditions are conjunctive queries. According to [1], we can
return all certain answers in polynomial time in the size of
the data, and the number of certain answers is polynomial in
the size of the data. Thus, the first step takes polynomial time
in the size of the data and the mapping.

In the second step, we sum up the probabilities of each
answer tuple. Because there are a polynomial number of ans-
wer tuples and each occurs in the answers of no more than n
reformulated queries, this step takes polynomial time in the
size of the data and the mapping. ��
Lemma 1 Let pM be a schema p-mapping. Let Q be an SPJ
query and Qm be Q’s mirror query with respect to pM. Let
DS be the source database and DT be the mirror target of
DS with respect to pM.

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT) and t
does not contain null value.

Proof If We prove t ∈ Qtuple(DS) by showing that we can
construct a mapping sequence seq such that for each target
instance D′

T that is consistent with DS and seq, t ∈ Q(D′
T).

Assume query Q (and so Qm) contains n subgoals (i.e.,
occurrences of tables in theFROM clause). Assume we obtain
t by joining n tuples t1, . . . , tn ∈ DT , each in the relation of
a subgoal. Consider a relation R that occurs in Q. Assume
tk1 , . . . , tkl , (k1, . . . , kl ∈ [1, n]) are tuples of R (for different
subgoals). Let pM ∈ pM be the p-mapping where R is the
target and let S be the source relation of pM . For each j ∈
[1, l], we denote the id value of tk j by tk j .id, and the mapping
value of tk j by tk j .mapping. Then, tk j is consistent with the
tk j .idth source tuple in S and the mapping tk j .mapping.

We construct the mapping sequence of R for seq as fol-
lows: (1) for each j ∈ [1, l], the mapping for the tk j .id-th
tuple is tk j .mapping; (2) the rest of the mappings are arbi-
trary mappings in pM . To ensure the construction is valid, we
need to prove that all tuples with the same id value have the
same mapping value. Indeed, for every j, h ∈ [1, l], j �=
h, because tk j and tkh satisfy the predicate (R1.id 〈〉 R2.id
OR R1.mapping=R2.mapping) in Qm , if tk j .id=tkh .id then
tk j .mapping=tkh .mapping.

We now prove for each target instance D′
T that is consistent

with DS and seq, t ∈ Q(D′
T). For each ti , i ∈ [1, n], we

denote by t ′i the tuple in D′
T that is consistent with the ti .idth

source tuple and the ti .mapping mapping. We denote by
R(ti), i ∈ [1, n], the subgoal that ti belongs to. By the defi-
nition of mirror target and also because t does not contain
null value, for each attribute of R(ti) that is involved in Q, ti
has non-null value, and so they are involved in the mapping
ti .mapping. Thus, t ′i has the same value for these attributes.
So t can be obtained by joining t ′1, . . . , t ′n and t ∈ Q(D′

T).

Only if. t ∈ Qtuple(DS), so there exists a mapping seq-
uence seq, such that for each D′

T that is consistent with DS

and seq, t ∈ Q(D′
T). Consider such a D′

T . Assume t is
obtained by joining tuples t1, . . . , tn ∈ D′

T , and for each
i ∈ [1, n], ti is a tuple of subgoal Ri . Assume ti is consistent
with source tuple si and mi . We denote by t ′i the instance
in DT whose id value refers to si and mapping value refers
to mi . Let Āi be the set of attributes of the subgoal Ri that
are involved in the query. Since t is a “certain answer”, all
attributes in Āi must be involved in mi . Thus, ti and t ′i have
the same value for these attributes, and all predicates in Q
hold on t ′1, . . . , t ′n .

Because D′
T is consistent with DS , for every pair of tuples

ti and t j , i, j ∈ [1, n], of the same relation, ti and t j are either
consistent with different source tuples in DS , or are consistent
with the same source tuple and the same possible mapping.
Thus, predicate R1.id 〈〉 R2.id OR R1.mapping=R2.
mapping in the mirror query must hold on t ′i and t ′j . Thus,
t ∈ Qm(DT). ��
Theorem 3 Let Q be an SPJ query and let pM be a schema
p-mapping. The problem of finding the probability for a
by-tuple answer to Q with respect to pM is #P-complete
with respect to data complexity and is in PTIME with respect
to mapping complexity.

Proof We prove the theorem by establishing three lemmas,
stating that (1) the problem is in PTIME in the size of the
mapping; (2) the problem is in #P in the size of the data; (3)
the problem is #P-hard in the size of the data. ��
Lemma 5 Let Q be an SPJ query and let pM be a schema
p-mapping. The problem of finding the probability for a by-
tuple answer to Q with respect to pM is in PTIME in the size
of the mapping.

Proof We can generate all answers in three steps. Let T1,

. . . , Tl be the relations mentioned in Q’s FROM clause. Let
pMi be the p-mapping associated with table Ti . Let di be the
number of tuples in the source table of pMi .

1. For each seq1 ∈ seqd1(pM1), . . . , seql ∈ seqdl(pMl),
generate a target instance that is consistent with the
source instance and pM as follows. For each i ∈ [1, l],
the target relation Ti contains di tuples, where the j th
tuple (1) is consistent with the j th source tuple and the
j th mapping m j in seqi , and (2) contains null as the
value of each attribute that is not involved in m j .

2. For each target instance, answer Q on the instance. Consi-
der only the answer tuples that do not contain the null
value and assign probability�l

i=1 Pr(seqi) to the tuple.
3. For each distinct answer tuple, sum up its probabilities.

According to the definition of by-tuple answers, the
algorithm generates all by-tuple answers. We now prove it

123

Data integration with uncertainty

takes polynomial time in the size of the mapping. Assume
each p-mapping pMi contains li mappings. Then, the num-
ber of instances generated in step 1 is �l

i=1ldi
i , polynomial

in the size of pM . In addition, the size of each generated
target instance is linear in the size of the source instance.
So the algorithm takes polynomial time in the size of the
mapping. ��
Lemma 6 Let Q be an SPJ query and let pM be a schema
p-mapping. The problem of finding the probability for a by-
tuple answer to Q with respect to pM is in #P in the size of
the data.

Proof According to Theorem 10, we can reduce the problem
to answering queries on disjunctive p-databases, which is
proved to be in #P [31]. Also, Theorem 11 shows we can do
the reduction in polynomial time. Thus, the problem is in #P
in the size of the data. ��
Lemma 7 Consider the following query

Q: SELECT ‘true’
FROM T, J, T’
WHERE T.a = J.a AND J.b = T’.b

Answering Q with respect to pM is #P-hard in the size of
the data.

Proof We prove the lemma by reducing the bipartite mono-
tone 2-DNF problem to the above problem.

Consider a bipartite monotone 2-DNF problem where
variables can be partitioned into X = {x1, . . . , xm} and
Y = {y1, . . . , yn}, and ϕ = C1 ∨ . . .∨Cl , where each clause
Ci has the form x j ∧ yk, x j ∈ X, yk ∈ Y . We construct the
following query-answering problem.

P-mapping: Let pM be a schema p-mapping containing pM
and pM ′. Let pM = (S, T,m) be a p-mapping where S =
〈a〉, T = 〈a′〉 and

m = {({(a, a′)}, 0.5), (∅, 0.5)}.
Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ = 〈b〉,
T ′ = 〈b′〉 and

m′ = {({(b, b′)}, 0.5), (∅, 0.5)}.
Source data. The source relation S contains m tuples: x1, . . . ,

xm . The source relation S′ contains n tuples: y1,

. . . , yn . The relation J contains l tuples. For each clause
Ci = x j ∧ yk , there is a tuple (x j , yk) in J .

Obviously the construction takes polynomial time. We
now prove the answer to the query is tuple true with proba-
bility #ϕ

2m+n , where #ϕ is the number of variable assignments
that satisfy ϕ. We prove by showing that for each variable
assignment vx1, . . . , vxm, vy1, . . . , vyn that satisfies ϕ, there
exists a mapping sequence seq such that true is a certain

answer with respect to seq and the source instance, and vice
versa.

For each variable assignment vx1, . . . , vxm, vy1, . . . , vyn

that satisfies ϕ, there must exist j and k such that vx j =
true, vyk = true, and there exists Ci = x j ∧ yk in ϕ. We
construct the mapping sequence for pM such that for each
j ∈ [1,m], if vx j = true, m j = ({(a, a′)}, 0.5), and if
vxk = false, m j = (∅, .5). We construct the mapping seq-
uence for pM ′ such that for each k ∈ [1, n], if vyk = true,
m′k = ({(b, b′)}, 0.5), and if vyk = false, m′k = (∅, 0.5).
Any target instance that is consistent with the source ins-
tance and {seq, seq ′} contains x j in T and yk in T ′. Since
Ci ∈ ϕ, J contains tuple (x j , yk) and so true is a certain
answer.

For each mapping sequence seq for pM and seq ′ for
pM ′, if true is a certain answer, there must exist j ∈ [1,m]
and k ∈ [1, n], such that x j is in any target instance that is
consistent with S and seq, yk is in any target instance that is
consistent with S′ and seq ′, and there exists a tuple (x j , yk)

in J . Thus, m j ∈ seq must be ({(a, a′)}, 0.5) and m′k ∈
seq ′ must be ({(b, b′)}, 0.5). We construct the assignments
vx1, . . . , vxm, vy1, . . . , vyn as follows. For each j ∈ [1,m],
if we have m j = ({(a, a′)}, 0.5) in seq, x j = true; otherwise,
x j = false. For each k ∈ [1, n], if mk = ({(b, b′)}, 0.5) in
seq, yk = true; otherwise, yk = false. Obviously, the values
of x j and yk are true, ϕ contains a term x j ∧ yk , and so ϕ is
satisfied.

Counting the number of variable assignments that satisfy
a bipartite monotone 2DNF Boolean formula is #P-complete.
Thus, answering query Q is #P-hard. ��

Note that in Lemma 7 Q contains two joins. Indeed, as
stated in the following conjecture, we suspect that even for
a query that contains a single join, query answering is also
#P-complete. The proof is still an open problem.

Conjecture 1 Let pM be a schema p-mapping containing
pM and pM ′. Let pM = (S, T,m) be a p-mapping where
S = 〈a, b〉, T = 〈c〉 and

m = {({(a, c)}, 0.5), ({(b, c)}, 0.5)}.
Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ = 〈d〉,
T ′ = 〈e〉 and

m′ = {({(d, e)}, 0.5), (∅, 0.5)}.
Consider the following query

Q: SELECT ‘true’
FROM T1, T2
WHERE T1.c=T2.e

Answering Q with respect to pM is #P-hard in the size of
the data. ��
Theorem 4 Given an SPJ query and a schema p-mapping,
returning all by-tuple answers without probabilities is in
PTIME with respect to data complexity.

123

X. L. Dong et al.

Proof According to the previous lemma, we can generate all
by-tuple answers by answering the mirror query on the mirror
target. The size of the mirror target is polynomial in the size
of the data and the size of the p-mapping, so answering the
mirror query on the mirror target takes polynomial time. ��

Lemma 2 . Let pM be a schema p-mapping between S̄ and
T̄ . Let Q be a non-p-join query over T̄ and let DS be an
instance of S̄. Let (t, Pr(t)) be a by-tuple answer with respect
to DS and pM. Let T̄ (t) be the subset of T(DS) such that for
each D ∈ T̄ (t), t ∈ Qtable(D). The following two conditions
hold:

1. T̄ (t) �= ∅;
2. Pr(t) = 1 −�D∈T̄ (t),(t,p)∈Qtable(D)(1 − p).

Proof We first prove (1). Let T be the relation in Q that is the
target of a p-mapping and let pM be the p-mapping. Let seq
be the mapping sequence for pM with respect to which t is a
by-tuple answer. Because Q is a non-p-join query, there is no
self join over T . So there must exist a target tuple, denoted by
tt , that is involved in generating t . Assume this target tuple is
consistent with the i th source tuple and a possible mapping
m ∈ pM . We now consider the i th tuple database Di in
T(DS). There is a target database that is consistent with Di

and m, and the database also contains the tuple tt . Thus, t is
a by-table answer with respect to Di and m, so Di ∈ T̄ (t)
and T̄ (t) �= ∅.

We next prove (2). We denote by m̄(Di) the set of map-
pings in m, such that for each m ∈ m̄(Di), t is a certain ans-
wer with respect to Di and m. For the by-table answer (t, pi)

with respect to Di , obviously pi = ∑
m∈m̄(Di)

Pr(m).
Let d be the number of tuples in DS . Now consider a

sequence seq = 〈m1, . . . ,md〉. As long as there exists i ∈
[1, d], such that mi ∈ m̄(Di), t is a certain answer with
respect to DS and seq. The probability of all sequences that
satisfy the above condition is 1 − �d

i=1(1 − ∑
m∈m̄(Di)

Pr(m)) = 1−�D∈T̄ (t),(t,p)∈Qtable(D)(1− p). Thus, Pr(t) =
1 −�D∈T̄ (t),(t,p)∈Qtable(D)(1 − p). ��

Theorem 5 Let pM be a schema p-mapping and let Q be
a non-p-join query with respect to pM. Answering Q with
respect to pM in by-tuple semantics is in PTIME in the size
of the data and the mapping.

Proof We first prove Algorithm NonPJoin generates all by-
tuple answers. According to Lemma 2, we should first answer
Q on each tuple database, and then compute the probabili-
ties for each answer tuple. In Algorithm NonPJoin, since
we introduce the id attribute and return its values, Step 2
indeed generates by-tuple answers for all tuple databases.
Finally, Step 3 computes the probability according to (2) in
the lemma.

We next prove Algorithm NonPJoin takes polynomial
time in the size of the data and the size of the mapping.
Step 1 goes through each possible mapping to add one more
correspondence and thus takes linear time in the size of the
mapping. In addition, the size of the revised mapping is
linear in the size of the original mapping. Since Algorithm
ByTable takes polynomial time in the size of the data and
the mapping, so does Step 2 in Algorithm NonPJoin; in
addition, the size of the result is polynomial in the size of
the data and the mapping. Step 3 of the algorithm goes over
each result tuple generated from Step 2, doing the projection
and computing the probabilities according to the formula, so
takes linear time in the size of the result generated from Step
2, and so takes also polynomial time in the size of the data
and the mapping. ��

Lemma 3 Let pM be a schema p-mapping. Let Q be a pro-
jected p-join query with respect to pM and let J̄ be a maxi-
mal p-join partitioning of Q. Let Q J1, . . . , Q Jn be the p-join
components of Q with respect to J̄ .

For any instance DS of the source schema of pM and
result tuple t ∈ Qtuple(DS), the following two conditions
hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈
Qtuple

J i (DS), such that t1, . . . , tn generate t when joined
together.

2. Let t1, . . . , tn be the above tuples. Then Pr(t) = �n
i=1

Pr(ti).

Proof We first prove (1). The existence of the tuple is
obvious. We now prove there exists a single such tuple for
each i ∈ [1, n]. A join component returns all attributes that
occur in Q and the join attributes that join partitions. The
definition of maximal p-join partitioning guarantees that for
every two partitions, they are joined only on attributes that
belong to relations involved in p-mappings. A projected-p-
join query returns all such join attributes, so all attributes
returned by the join component are also returned by Q. Thus,
every two different tuples in the result of the join component
lead to different query results.

We now prove (2). Since a partition in a join component
contains at most one subgoal that is the target of a p-mapping
in pM , each p-join component is a non-p-join query. For
each i ∈ [1, n], let seqi be the mapping sequences with
respect to which ti is a by-tuple answer. Obviously, Pr(ti) =∑

seq∈seqi
Pr(seq).

Consider choosing a set of mapping sequences S̄ = {seq1,

. . . , seqn}, where seqi ∈ seqi for each i ∈ [1, n]. Obviously,
t is a certain answer with respect to S̄. Because choosing dif-
ferent mapping sequences for different p-mappings are inde-
pendent, the probability of S̄ is�n

i=1 Pr(seqi). Thus, we have

123

Data integration with uncertainty

Pr(t) =
∑

seq1∈seq1,...,seqn∈seqn

�n
i=1 Pr(seqi)

= �n
i=1

∑

seqi ∈seqi

Pr(seqi)

= �n
i=1 Pr(ti)

This proves the claim. ��
Theorem 6 Let pM be a schema p-mapping and let Q be
a projected-p-join query with respect to pM. Answering Q
with respect to pM in by-tuple semantics is in PTIME in the
size of the data and the mapping.

Proof We first prove Algorithm ProjectedPJoin generates
all by-tuple answers for projected-p-join queries. First, it is
trivial to verify that the partitioning generated by step 1 satis-
fies the two conditions of a p-join partitioning and is maxi-
mal. Then, step 2 and step 3 compute the probability for each
by-tuple answer according to Lemma 3.

We next prove it takes polynomial time in the size of the
mapping and in the size of the data. Step 1 takes time polyno-
mial in the size of the query, and is independent of the size of
the mapping and the data. The number of p-join components
is linear in the size of the query and each is smaller than the
original query. Since Algorithm NonPJoin takes polynomial
time in the size of the data and the size of the mapping, Step
2 takes polynomial time in the size of the mapping and the
size of the data too, and the size of each result is polyno-
mial in size of the data and the mapping. Finally, joining the
results from Step 2 takes polynomial time in the size of the
results, and so also polynomial in the size of the data and
the mapping. ��
Theorem 8 Let g pM be a schema group p-mapping and let
Q be an SPJ query. The mapping complexity of answering Q
with respect to g pM in both by-table semantics and by-tuple
semantics is in PTIME.

Proof We first consider by-table semantics and then consider
by-tuple semantics. For each semantics, we prove the theo-
rem by first describing the query-answering algorithm, then
proving the algorithm generates the correct answer, and next
analyzing the complexity of the algorithm.
By-table semantics. I. First, we describe the algorithm that we
answer query Q with respect to the group p-mapping g pM .
Assume Q’s FROM clause contains relations T1, . . . , Tl . For
each i ∈ [1, l], assume Ti is involved in group p-mapping
g pMi , which contains gi groups (if Ti is not involved in any
group p-mapping, we assume it is involved in an identity
p-mapping that corresponds each attribute with itself). The
algorithm proceeds in five steps.

Step 1 We first partition all target attributes for T1, . . . , Tl as
follows. First, initialize each partition to contain attributes in

one group (there are
∑l

i=1 gi groups). Then, for each pair of
attributes a1 and a2 that occur in the same predicate in Q,
we merge the two groups that t1 and t2 belong to. We call the
result partitioning an independence partitioning with respect
to Q and g pM .

Step 2 For each partition p in an independence partitioning,
if p contains attributes that occur in Q, we generate a sub-
query of Q as follows. (1) The SELECT clause contains all
variables in Q that are included in p, and an id column for
each relation that is involved in p (we assume each tuple
contains an identifier column id; in practice, we can use the
key attribute of the tuple in place of id); (2) The FROM clause
contains all relations that are involved in p; and (3) The
WHERE clause contains only predicates that involve attri-
butes in p. The query is called the independence query of p
and is denoted by Q(p).

Step 3 For each partition p, let pM1, . . . , pMn be the
p-mappings for the group of attributes involved in p. For each
m1 ∈ pM1, . . . ,mn ∈ pMn , rewrite Q(p)w.r.t. m1, . . . ,mn

and answer the rewritten query on the source data. For each
returned tuple, assign �n

i=1mi as the probability and add
n columns mapping1, . . . , mappingn , where the column
mappingi , i ∈ [1, n], has the identifier for mi as the value.
Union all result tuples.

Step 4 Join the results of the sub-queries on the id attributes.
Assume the result tuple t is obtained by joining t1, . . . , tk ,
then Pr(t) = �k

i=1 Pr(tk).

Step 5 For tuples that have the same values, assuming to be
tuple t , for attributes on Q’s returned attributes but different
values for the mapping attributes, sum up their probabilities
as the probability for the result tuple t .

II. We now prove the algorithm returns the correct by-
table answers. For each result answer tuple a, we should add
up the probabilities of the possible mappings with respect to
which a is generated. This is done in Step 5. So we only need
to show that given a specific combination of mappings, the
first four steps generate the same answer tuples as with nor-
mal p-mappings. The partitioning in Step 1 guarantees that
different independence queries involve different p-mappings
and so Step 2 and 3 generate the correct answer for each inde-
pendence query. Step 4 joins results of the sub-queries on the
id attributes; thus, for each source tuple, the first four steps
generate the same answer tuple as with normal p-mappings.
This proves the claim.

III. We next analyze the time complexity of the algorithm.
The first two steps take polynomial time in the size of the
mapping and the number of sub-queries generated by Step
2 is polynomial in the size of the mapping. Step 3 answers
each sub-query in polynomial time in the size of the mapping
and the result is polynomial in the size of the mapping. Step

123

X. L. Dong et al.

4 joins a set of results from Step 3, where the number of the
results and the size of each result is polynomial in the size
of the mapping, so it takes polynomial time in the size of
the mapping too and the size of the generated result is also
polynomial in the size of the mapping. Finally, Step 5 takes
polynomial time in the size of the result generated in Step
4 and so takes polynomial time in the size of the mapping.
This proves the claim.

By-tuple semantics. First, we describe the algorithm that we
answer query Q with respect to the group p-mapping g pM .
The algorithm proceeds in five steps and the first two steps
are the same as in by-table semantics.

Step 3 For each partition p, let pM1, . . . , pMn be the
p-mappings for the group of attributes involved in p. For
each mapping sequence seq over pM1, . . . , pMn , answer
Q(p) with respect to seq in by-tuple semantics. For each
returned tuple, assign Pr(seq) as the probability and add a
column seq with an identifier of seq as the value.

Step 4 Join the results of the sub-queries on the id attributes.
Assume the result tuple t is obtained by joining t1, . . . , tk ,
then Pr(t) = �k

i=1 Pr(tk).

Step 5 Let t1, . . . , tn be the tuples that have the same values,
tuple t , for attributes on Q’s returned attributes but different
values for the seq attributes, sum up their probabilities as the
probability for the result tuple t .

We can verify the correctness of the algorithm and analyze
the time complexity in the same way as in by-table semantics.

��
Proposition 1 For each n ≥ 1, Mn+1

ST ⊂ Mn
ST .

Proof We first prove for each n ≥ 1, Mn+1
ST ⊆ Mn

ST , and
then prove there exists an instance in Mn

ST that does not have
an equivalent instance in Mn+1

ST .
(1) We prove Mn+1

ST ⊆ Mn
ST by showing for each (n+1)-

group p-mapping we can find a n-group p-mapping equi-
valent to it. Consider an instance g pM = (S, T, pM) ∈
Mn+1

ST , where pM = {pM1, . . . , pMn+1}. We show how
we can construct an instance g pM ′ ∈ Mn

ST that is equiva-
lent to g pM . Consider merging pM1 = (S1, T1,m1) and
pM2 = (S2, T2,m2) and generating a probabilistic mapping
pM1−2 = (S1 ∪ S2, T1 ∪ T2,m1−2), where m1−2 includes
the Cartesian product of the mappings in m1 and m2. Consi-
der the n-group p-mapping g pM ′ = (S, T, pM ′), where
pM ′ = {pM1−2, pM3, . . . , pMn+1}. Then, g pM and g pM ′
describe the same mapping.

(2) We now show how we can construct an instance in
Mn

ST that does not have an equivalent instance in Mn+1
ST .

If S and T contain less than n attributes, Mn
ST = ∅ and

the claim holds. Otherwise, we partition attributes in S and
T into {{s1}, . . . , {sn−1}, {sn, . . . , sm}} and {{t1}, . . . , {tn−1},

{tn, . . . , tl}}. Without losing generality, we assume m ≤ l.
For each i ∈ [1, n − 1], we define

mi = {({(si , ti)}, 0.8), (∅, 0.2)}.
In addition, we define

mn =
{(

{(sn, tn)}, 1

(m − n + 1)

)

, . . . ,

(

{(sm, tn)}, 1

(m − n + 1)

)}

.

We cannot further partition S into n + 1 subsets such that
attributes in different subsets correspond to different attri-
butes in T . Thus, we cannot find a (n + 1)-group p-mapping
equivalent to it. ��
Proposition 2 Given a p-mapping pM = (S, T,m), we can
find in polynomial time in the size of pM the maximal n and
an n-group p-mapping g pM, such that g pM is equivalent to
pM.

Proof We prove the theorem by first presenting an algo-
rithm that finds the maximal n and the equivalent n-group
p-mapping g pM , then proving the correctness of the algo-
rithm, and finally, analyzing its time complexity.

I. We first present the algorithm that takes a p-mapping
pM = (S, T,m), finds the maximal n and the n-group
p-mapping that is equivalent to pM .

Step 1 First, partition attributes in S and T . Initialize the par-
titions such that each contains a single attribute in S or T .
Then for each attribute correspondence (s, t) occurring in a
possible mapping, if s and t are in different partitions, merge
the two partitions. Let P = {p1, . . . , pn} be the result parti-
tioning.

Step 2 For each partition pi , i ∈ [1, n], and each m ∈ m,
select the correspondences in m that involve only attributes
in pi , use them to construct a sub-mapping, and assign Pr(m)
to the sub-mapping. We compute the marginal probability of
each sub-mapping.

Step 3 For each partition pi , i ∈ [1, n], examine if its pos-
sible mappings are independent of the possible mappings
for the rest of the partitions. Specifically, for each partition
p j , j > i , if there exists a possible mapping m for pi and a
possible mapping m′ for p j , such that Pr(m|m′) �= Pr(m),
merge pi into p j . For the new partition p j , update its pos-
sible sub-mappings and their marginal probabilities. Step 3
generates a set of partitions, each with a set of sub-mappings
and their probabilities.

Step 4 Each partition generated in Step 3 is associated with
a p-mapping. The set of all p-mappings forms the group
p-mapping g pM that is equivalent to pM .

II. We now prove the correctness of the algorithm. It is
easy to prove g pM is equivalent to pM . Assume g pM is

123

Data integration with uncertainty

an n-group p-mapping. We next prove n is maximal. Consi-
der another group p-mapping g pM ′. We now prove for each
p-mapping in g pM ′, it either contains all attributes in a par-
tition generated in Step 3 or contains none of them. Accor-
ding to the definition of group p-mapping, each p-mapping
in g pM ′ must contain either all attributes or none of the attri-
butes in a partition in P . In addition, every two partitions in
P that are merged in Step 3 are not independent and have
to be in the same p-mapping in g pM ′ too. This proves the
claim.

III. We next consider the time complexity of the algo-
rithm. Let m be the number of mappings in pM , and a
be the minimum number of attributes in R and in S. Step
1 considers each attribute correspondence in each possible
mapping. A mapping contains no more than a attribute cor-
respondences, so Step 1 takes time O(ma). Step 2 consi-
ders each possible mapping for each partition to generate
sub-mappings. The number of partitions cannot exceed a, so
Step 2 also takes time O(ma). Step 3 considers each pair of
partitions, and takes time O(ma2). Finally, Step 4 outputs the
results and takes time O(ma). Overall, the algorithm takes
time O(ma2), which is polynomial in the size of the full-
distribution instance. ��
Theorem 9 Let pC be a schema p-correspondence, and Q
be an SPJ query. Then, Q is p-mapping independent with
respect to pC if and only if for each pC ⊆ pC, Q is a
single-attribute query with respect to pC.

Proof We prove for the case when there is a single
p-correspondence in pC and it is easy to generalize our proof
to the case when there are multiple p-correspondences in pC .
If: Let pM1 and pM2 be two p-mappings over S and T where
pC(pM1) = pC(pM2). Let DS be a database of schema S.
Consider a query Q over T . Let t j be the only attribute invol-
ved in query Q. We prove Q(DS) is the same with respect
to pM1 and pM2 in both by-table and by-tuple semantics.

We first consider by-table semantics. Assume S has n attri-
butes s1, . . . , sn . We partition all possible mappings in pM1

into m̄0, . . . , m̄n , such that for any m ∈ m̄i , i ∈ [1, n], m
maps attribute si to t j , and for any m ∈ m̄0, m does not map
any attribute in S to t j . Thus, for each i ∈ [1, n], Pr(m̄i) =
Pr(ci j).

Consider a tuple t . Assume t is an answer tuple with res-
pect to a subset of possible mappings m̄ ⊆ m. Because Q
contains only attribute t j , for each i ∈ [0, n], either m̄i ⊆ m̄
or m̄i ∩ m̄ = ∅. Let m̄k1, . . . , m̄kl , k1, . . . , kl ∈ [0, n], be the
subsets of m̄ such that m̄k j ⊆ m̄ for any j ∈ [1, l]. We have

Pr(t) =
l∑

i=1

Pr(m̄ki) =
l∑

i=1

Pr(cki j).

Now consider pM2. We partition its possible mappings in
the same way and obtain m̄′

0, . . . , m̄′
n . Since Q contains only

attribute t j , for each i ∈ [0, n], the result of Q with respect
to m′ ∈ m̄′

i is the same as the result with respect to m ∈ m̄i .
Therefore, the probability of t with respect to pM2 is

Pr(t)′ =
l∑

i=1

Pr(m̄′
ki
) =

l∑

i=1

Pr(cki j).

Thus, Pr(t) = Pr(t)′ and this proves the claim.
We can prove the claim for by-tuple semantics in a simi-

lar way where we partition mapping sequences. We omit the
proof here.

Only if. We prove by showing that for every query Q that
contains more than one attribute in a relation being involved
in a p-correspondence, there exist p-mappings pM1 and pM2

and source instance DS , such that Q(DS) obtains different
results with respect to pM1 and pM2.

Assume query Q contains attributes a′ and b′ of T .
Consider two p-mappings pM1 and pM2, where

pM1 ={({(a, a′), (b, b′)}, 0.5), ({(a, a′)}, 0.3), ({(b, b′)}, 0.2)}
pM2 ={({(a, a′), (b, b′)}, 0.6), ({(a, a′)}, 0.2), ({(b, b′)}, 0.1),

(∅, 0.1)}
One can verify that pC(pM1) = pC(pM2).

Consider a database DS , such that for each tuple of the
source relation in pM1 and pM2, the values for attributes
a and b satisfy the predicates in Q. Since only when the
possible mapping {(a, a′), (b, b′)} is applied can we gene-
rate valid answer tuples, but the possible mapping {(a, a′),
(b, b′)} has different probabilities in pM1 and pM2, Q(DS)

obtains different results with respect to pM1 and pM2 in both
semantics. ��
Corollary 1 Let pC be a schema p-correspondence, and
Q be a p-mapping independent SPJ query with respect to
pC. The mapping complexity of answering Q with respect to
pC in both by-table semantics and by-tuple semantics is in
PTIME.

Proof By-table. We revise algorithm By- Table, which
takes polynomial time in the size of the schema p-mapping, to
compute answers with respect to schema p-correspondences.
At the place where we consider a possible mapping in the
algorithm, we revise to consider a possible attribute corres-
pondence. Obviously the revised algorithm generates the cor-
rect by-table answers and takes polynomial time in the size
of the mapping.

By-tuple. We revise the algorithm in the proof of Theorem 3,
which takes polynomial time in the size of the schema
p-mapping, to compute answers with respect to schema
p-correspondences. Everywhere we consider a possible map-
ping in the algorithm, we revise to consider a possible attribute
correspondence. Obviously the revised algorithm generates
the correct by-tuple answers and takes polynomial time in
the size of the mapping. ��

123

X. L. Dong et al.

Theorem 10 Let pM = (S, T,m) be a p-mapping and DS

be an instance of S.

1. There is a unique by-table core universal solution and
a unique by-tuple core universal solution up to isomor-
phism for DS with respect to pM.

2. Let Q be a conjunctive query over T . We denote by
Q(pD) the results of answering Q on pD and discar-
ding all answer tuples containing null values. Then,

Qtable(DS) = Q(pDtable
T).

Similarly, let pDtuple
T be the by-tuple core universal solu-

tion for DS under pM. Then,

Qtuple(DS) = Q(pDtuple
T).

Proof We first consider by-table semantics and then
consider by-tuple semantics. For each semantics, we first
present an algorithm that generates the core universal solu-
tion, then prove the generated solution (1) is a core universal
solution and (2) is unique, and last prove answering Q on the
core universal solution obtains the same results as answering
Q on the source data with respect to pM .

By-table semantics. I. First, we describe the algorithm that
generates a by-table core universal solution for DS with res-
pect to pM . The algorithm proceeds in two steps.

Step 1 For each mapping m ∈ m, generate the core universal
solution for DS with respect to m, denoted by (DT , Pr(DT)),
as follows.

1. For each tuple t ∈ DS , apply m to obtain t ′ as follows:
(1) for each attribute at ∈ T such that there exists an
attribute correspondence (as, at) ∈ m, the value of a j in
t ′ is the same constant as the value of as in t ; (2) for the
rest of the attributes a ∈ T , the value of a in t ′ is a fresh
labeled null.

2. If there does not exist a tuple in DT that has the same
constant values as t ′, insert t ′ to DT .

3. Set Pr(DT) to Pr(m).

Step 2 Let pDT be a p-database with all possible databases
generated as described. Examine each pair of possible data-
bases (DT , Pr(DT)) and (D′

T , Pr(D′
T)). If DT and D′

T are
isomorphic, replace them with a single possible database
(DT , Pr(DT)+ Pr(D′

T)).
II. We now prove the result pDT is a by-table core uni-

versal solution. First, the way we generate the p-database
guarantees that it is a by-table solution.

Second, we show for every solution pD′
T for DS with

respect to pM , we can construct a homomorphism mapping
from pDT to pD′

T . Consider (DT , Pr(DT)) ∈ pDT . Let

m̄(DT) ⊆ m be the mappings that are involved in gene-
rating DT . Each possible mapping in m̄(DT) must corres-
pond to a possible database D′

T ∈ pD′
T and different map-

pings can correspond to the same possible database. Let
D̄′

T (m̄(DT)) ⊆ pD′
T be the set of possible databases that

together correspond to all mappings in m̄(DT). We define
the homomorphism mapping as DT → p̄D′

T (m̄(DT)). (1)
Because for each m ∈ m̄(t), DT is a core universal solu-
tion, for every D′

T ∈ D̄′
T (m̄(DT)), there is a homomor-

phism from DT to D′
T . (2) Pr(DT) = ∑

m∈m̄(DT)
Pr(m) =

∑
D∈D̄′

T (m̄(DT))
Pr(D). (3) For any D1

T , D2
T ∈ pDT , D1

T �=
D2

T , h(D1
T) and h(D2

T) do not overlap because otherwise,
there are two possible mappings that correspond to different
possible databases in pDT but the same possible database in
pD′

T , so D1
T and D2

T should be isomorphic and should be
merged in Step 2. All possible databases in pD′

T together
cover all mappings, and so we can partition h(pD1), . . . ,

h(pDn). Thus, pDT is a universal solution.
Finally, the way we generate pDT guarantees that in each

possible database, any two tuples are not homomorphic. So
pDT is a core universal solution.

III. Next, we prove pDT is unique. Assume there is ano-
ther p-database pD′

T that is also a core universal solution.
We now prove there exists an isomorphism between pDT

and pD′
T . Because pDT is a universal solution, there is a

homomorphism h from pDT to pD′
T . Similarly, there is a

homomorphism h′ from pD′
T to pDT . Thus, the number

of possible databases in pDT and pD′
T must be the same

and both h and h′ are one-to-one mappings. Now we prove
for every D ∈ pDT , h′(h(D)) = D ∈ pDT and so D
and h(D) are isomorphic. Assume in contrast, this statement
does not hold. Then, because the numbers of databases in
pDT and pD′

T are finite, there must be a database D ∈ pDT

for which there exist k ≥ 1 databases in pDT such that
h′(h(D)) = D1, h′(h(D1)) = D2, . . . , h′(h(Dk−1)) = Dk

and h′(h(Dk)) = D. For each i ∈ [1, k], D is homomorphic
to Di and Di is homomorphic to D. Thus, D, D1, . . . , Dk are
all isomorphic. Now consider a p-database pD0 that contains
all possible databases in pDT except D1, . . . , Dk . This data-
base is also a by-table solution of DS . However, as pD0

contains less databases, there does not exist a homomor-
phism from pDT to pD0, contradicting the fact that pDT

is a universal solution. Thus, pDT and pD′
T are isomorphic.

IV. Finally, we prove that Qtable(DS) = Q(pDT) by sho-
wing that for every tuple t , the probability of t in Qtable(DS)

is the same as in Q(pDT) (the probability can be 0). We
denote by m̄(t) the set of mappings with respect to which
t is a certain answer (m̄(t) can be empty), and by D̄(m̄(t))
the set of possible databases related to mappings in m̄(t).
Obviously, Pr(m̄(t)) = Pr(D̄(m̄(t))). So we only need to
prove that (1) for each D ∈ D̄(m̄(t)), t ∈ Q(D), and (2) for
each D �∈ D̄(m̄(t)), t �∈ Q(D). First, for each m ∈ m̄(t),

123

Data integration with uncertainty

there exists at least a source tuple ts ∈ DS on which ans-
wering Q obtains t . Then, according to the way we generate
D(m), answering Q on ts’s corresponding tuple in D(m)
must also obtain t . Second, consider a database D �∈ m̄(t).
Let m′ be the possible mapping with respect to which D
is consistent with DS . The way we construct pD guaran-
tees that m′ �∈ m̄(t). Assume in contrast, answering Q on D
generates t . Thus, there must exist a tuple tt ∈ D on which
answering Q obtains t . Accordingly, there must exist a source
tuple ts ∈ D on which answering Q can generate t as a cer-
tain answer with respect to m′, contradicting the fact that t
is not a certain answer with respect to m′. This proves the
claim.
By-tuple semantics. Here we generate the by-tuple core uni-
versal solution in a similar way except that we consider each
mapping sequence with the same length as the number of
tuples in DS , rather than each possible mapping. The rest of
the proof is similar to the by-table semantics. ��
Lemma 4 Let pM = (S, T,m) be a p-mapping and DS be
an instance of S.

The by-tuple core universal solution for DS under pM
can be represented as a disjunctive p-database.

Proof We describe how we construct such disjunctive
p-database, denoted by pD∨

T , and show it is equivalent to
the p-database we constructed in the proof of Theorem 10.

The disjunctive p-database pD∨ has attributes in T and a
key column that is the key of the relation. For the i th tuple ts
in S and each m ∈ m, generate a target tuple tt , such that (1)
for each attribute correspondence (as, at) ∈ m, the value of
at is the same as the value of as in ts ; (2) for each attribute at

in T that is not involved in any attribute correspondence in
m, the value of at is a fresh labeled null; and (3) the value of
the key attribute is i . The probability of the tuple is Pr(m).
Let n be the number of tuples in DS and l be the number of
mappings in pM . Generating the target instance takes time
O(l · n), polynomial in the size of the data and the mapping.

We now show the equivalence of pD∨
T and pDT , the

p-database constructed as described in the proof of Theo-
rem 10. The disjunctive p-database pD∨ is equivalent to
a p-database pD′ that contains nl possible worlds, in each
of which the possible database corresponds to a mapping
sequence of length n, which is isomorphic to the p-database
we generated in the first step towards generating pDT . This
proves the claim. ��
Theorem 11 Let pM = (S, T,m) be a p-mapping and DS

be an instance of S.
Generating the by-table or by-tuple core universal solu-

tion for DS under pM takes polynomial time in the size of
the data and the mapping.

Proof Let n be the number of source tuples and l be the num-
ber of possible mappings. We first examine the time com-

plexity of generating the by-table core universal solution. In
the algorithm described in the proof of Theorem 10, the first
step takes time O(n ·l). In the second step, we basically com-
pare the constant values of tuples so it takes time O(n2l2).
Thus, the algorithm takes time O(n2l2), which is polynomial
in the size of the data and the size of the mapping.

We now examine the time complexity of generating the by-
tuple disjunctive p-database solution. In the algorithm des-
cribed in the proof of Lemma 4, for each source tuple and
each mapping, we generate a target tuple. So the algorithm
takes time O(n · l), which is linear in the size of the data and
the size of the mapping. ��
Theorem 13 Let pG M be a GLAV p-mapping between a
source schema S̄ and a target schema T̄ . Let DS be an ins-
tance of S̄.

Generating the by-table core universal solution for DS

under pM takes polynomial time in the size of the data and
the mapping.

Proof For each possible GLAV mapping m ∈ pG M , gene-
rating the core universal solution takes polynomial time [11]
in the size of the data and the size of m. The number of
core universal solutions we need to generate is the same as
the number of possible mappings in pG M . Thus, generating
the by-table core universal solution for DS under pM takes
polynomial time in the size of the data and the size of the
p-mapping. ��
Theorem 14 Let pM1 = (R, S,m1) and pM2 = (S, T,m2)

be two p-mappings. Between R and T there exists a unique
p-mapping, pM, that is the composition of pM1 and pM2

in both by-table and by-tuple semantics and we can generate
pM in polynomial time.

Proof We prove the theorem by first describing an algorithm
that generates the composition of two mappings and analy-
zing the complexity of the algorithm, then proving it is both
the by-table composition and the by-tuple composition, and
finally showing it is unique.

I. We generate the composition mapping pM in two steps.

Step 1 For each m1 ∈ m1 and m2 ∈ m2, generate the com-
position of m1 and m2 as follows. For each correspondence
(r, s) ∈ m1 and each correspondence (s, t) ∈ m2, add (r, t) to
m1◦m2. The probability of m1◦m2 is set to Pr(m1)·Pr(m2).

Step 2 Merge equivalent mappings generated in the previous
step and take the sum of their probabilities as the probability
of the merged mapping.

Let m be the number of mappings in pM1 and n be the
number of mappings in pM2. The first step of the algorithm
takes time O(m ·n) and the second step of the algorithm takes
time O(m2n2). Thus, the algorithm takes time O(m2n2),
polynomial in the size of the input.

123

X. L. Dong et al.

II. We now prove pM is a composition of pM1 and pM2.
We first consider the by-table semantics. It is easy to prove
the “if” side in Definition 22 so we only prove the “only if”
side.

Consider an instance DR of R and an instance DT of T
where DT is consistent with DR with probability p. We now
describe how we construct a set of instances D̄S of S such that
the three conditions in Definition 22 hold. Let m̄ be the set of
mappings in pM with respect to which DT is consistent with
DR . For each m ∈ m̄, according to the way we construct pM ,
there must be a list of mappings m̄1 and a list of mappings
m̄2 with the same length, such that for the i th mapping mi

1 ∈
m̄1 and the i th mapping mi

2 ∈ m̄2, composing them obtains
m. For each i , construct the core universal solution of DR

with respect to mi
1 and denote it by Di

S . Obviously, Di
S is

consistent with DR with probability Pr(mi
1). The way we

construct pM also guarantees that DT is consistent with DS

with probability Pr(mi
2). Finally, for an instance DS of S

that is not isomorphic to any database in m̄, it cannot happen
that DS is consistent with DR and DT is consistent with DS .
Thus, p = ∑

i Pr(mi
1)Pr(mi

2).
The proof for by-tuple semantics is similar, except that we

consider each mapping sequence.
III. We prove for by-table semantics and the proof for

by-tuple semantics is similar. Assume there exists another
p-mapping pM ′ that is the composition of pM1 and pM2.
Assume pM ′ contains a possible mapping m that does not
occur in pM . Then, there must exist an instance DT of T that
is consistent with DR with respect to m but not with respect to
any mapping in pM . Thus, there must exist a set of instances
of S that satisfy the three conditions in the definition, leading
to the contradictory fact that DT should also be consistent
with DR with respect to pM . This proves the claim. ��

Theorem 15 N-group (n > 1) p-mappings are not closed
under mapping composition.

Proof We show a counter example where the composition of
two 2-group p-mappings can not be represented as a 2-group
p-mapping.

Let pM1 be a 2-group p-mapping between R(a, b, c) and
S(a′, b′, c′), where attributes in R are partitioned into {a}
and {b, c}, and attributes in S are partitioned into {a′} and
{b′, c′}:

pM1 = {pM1, pM ′
1},

pM1 = {({(a, a′)}, 1)},
pM ′

1 = {({(b, b′), (c, c′)}, 0.5), ({(b, c′), (c, b′)}, 0.5)}.

Let pM2 be a 2-group p-mapping between S(a′, b′, c′)
and T (a′′, b′′, c′′), where attributes in S are partitioned into
{a′, b′} and {c′}, and attributes in T are partitioned into

{a′′, b′′} and {c′′}, and the two p-mappings are

pM2 = {pM2, pM ′
2},

pM2 = {({(a′, a′′), (b′, b′′)}, 0.5), ({(a′, b′′), (b′, a′′)}, 0.5)},
pM ′

2 = {({(c′, c′′)}, 1)}.
The composition of pMRS and pMST contains four pos-

sible mappings, shown as follows:

pM3 = {({(a, a′′), (b, b′′), (c, c′′)}, 0.25),

({(a, b′′), (b, a′′), (c, c′′)}, 0.25),

({(a, a′′), (b, c′′), (c, b′′)}, 0.25),

({(a, b′′), (b, c′′), (c, a′′)}, 0.25)}.
In this mapping, R’s attribute b can be mapped to any

attribute in T , and thus there does not exist an equivalent
2-group p-mapping. ��
Theorem 16 Let pM = (S, T,m) be a p-mapping. Then,
pM has an inverse p-mapping if and only if

– m contains a single possible mapping (m, 1);
– each attribute in S is involved in an attribute correspon-

dence in m.

Proof If Construct a p-mapping pM ′ = (T, S,m′)where m′
contains a single mapping m′ and for each correspondence
(s, t) ∈ m, there is a correspondence (t, s) ∈ m′.

If we compose pM and pM ′ in the way we described in
the proof of Theorem 14, we obtain a p-mapping between
S and S that contains a single possible mapping, where the
mapping maps each attribute to itself. Thus, the result is an
identical p-mapping and pM ′ is an inverse of pM .

Only if: We show that if any of the conditions does not hold,
we cannot generate an inverse mapping of pM . First, assume
m contains two possible mappings m1 and m2 and both of
them have inverse mappings, denoted by m−1

1 and m−1
2 . Then,

if there exists a p-mapping pM ′ that is the inverse of pM ,
it should contain both m−1

1 and m−1
2 as possible databases.

However, a mapping has a unique inverse mapping, so com-
posing m1 with m−1

2 does not obtain the identical mapping.
Thus, composing pM with pM ′ does not obtain the identical
mapping.

Now consider a p-mapping which satisfies the first condi-
tion, but not the second. Let a be the source attribute that is
not involved in any attribute correspondence in m. Then for
any mapping m′ from T to S, composing m with m′ does
not map m to any attribute so the result is not an identical
mapping. This proves the claim. ��
Theorem 17 Let pC M be a complex schema p-mapping bet-
ween schemas S̄ and T̄ . Let DS be an instance of S̄.

123

Data integration with uncertainty

1. Let Q be an SPJ query over T̄ . The data complexity and
mapping complexity of computing Qtable(DS) with res-
pect to pC M are PTIME. The data complexity of com-
puting Qtuple(DS)with respect to pC M is #P-complete.
The mapping complexity of computing Qtuple(DS) with
respect to pC M is in PTIME.

2. Generating the by-table or by-tuple core universal solu-
tion for DS under pC M takes polynomial time in the size
of the data and the mapping.

Proof We prove the theorem by showing that we can con-
struct a normal schema p-mapping from pC M and answer
a query with respect to the normal p-mapping. For each
pC M ∈ pC M between source S(s1, . . . , sm) and target
T (t1, . . . , tn), we construct a normal p-mapping pM = (S′,
T ′,m) as follows. The source S′ contains all elements of
the power set of {s1, . . . , sm} and the target T ′ contains all
elements of the power set of {t1, . . . , tn}. For each complex
mapping cm ∈ pC M , we construct a mapping m such that for
each set correspondence between S and T in cm, m contains
an attribute correspondence between the corresponding set
attributes in S′ and T ′. Because each attribute set occurs in
one correspondence in cm, m is a one-to-one mapping. The
result pM contains the same number of possible mappings
and each mapping contains the same number of correspon-
dences as pC M . We denote the result schema p-mapping by
pM . The complexity of data exchange carries over.

Now consider query answering. Since for each possible
mapping cm ∈ pC M , an attribute is involved in at most one
correspondence, query answering with respect to pC M gets
the same result as with respect to pM and so the complexity
results for normal schema p-mappings carry over. ��
Theorem 18 Let pUM be a union schema p-mapping bet-
ween a source schema S̄ and a target schema T̄ . Let DS be
an instance of S̄.

1. Let Q be a conjunctive query over T̄ . The problem of
computing Qtable(DS)with respect to pUM is in PTIME
in the size of the data and the mapping; the problem of
computing Qtuple(DS)with respect to pUM is in PTIME
in the size of the mapping and #P-complete in the size of
the data.

2. Generating the by-table or by-tuple core universal solu-
tion for DS under pUM takes polynomial time in the size
of the data and the mapping.

Proof Answering a query with respect to a union mapping
can be performed by first answering the query on each ele-
ment mapping, and then taking the union of the results. Thus,
the complexity of answering a query with respect to a union
mapping is the same as the complexity of answering a query
with respect to a normal mapping. When we have union pro-

babilistic mappings, in each step where we need to answer
a query with respect to a possible union mapping, we first
answer the query on each element mapping and then union
the results. So the complexity results carry over.

Now consider data exchange for a union probabilistic
schema mapping. In by-table semantics, we can generate
the core universal solution in the same way as with respect
to normal mappings, except that we consider each element
mapping in the union mapping when we generate the target
for a source tuple. Thus, we can generate the by-table core
universal mapping in polynomial time.

In by-tuple semantics, we need a new representation of
p-databases, called union disjunctive p-databases, which we
define as follows. Let R be a relation schema where there
exists a set of attributes that together form the key of the
relation and an attribute group. Let pU D∨

R be a set of tuples
of R, where some of the tuples are attached with probabilities.
We say that pU D∨

R is a union disjunctive p-database if (1)
for each key value that occurs in pU D∨

R , the probabilities
of the tuples with this key value sum up to 1, (2) the value
of group in each tuple with a probability is unique, and the
value of group in each tuple without probability is the same
as that of a tuple with probability and with the same key
value. In a union disjunctive p-databases, we consider tuples
with the same key value as disjoint, and tuples with the same
group value as unioned. Specifically, let key1, . . . , keyn be
the set of all distinct key values in pD∨

R . For each i ∈ [1, n],
we denote by di the number of tuples whose key value is
keyi and who has a probability. Then, pD∨

R can define a set
of �n

i=1di possible databases, where each possible database
(D, Pr(D)) contains n tuples t1, . . . , tn with probabilities
and m tuples without probabilities, such that (1) for each
i ∈ [1, n], the key value of ti is keyi ; (2) a tuple without
probability is in D if and only if it shares the same value of
group with one of t1, . . . , tn ; and (3) Pr(D) = �n

i=1 Pr(ti).
We generate the by-tuple core universal solution with res-

pect to a union probabilistic mapping in the same way as for
normal p-mappings, except that for each possible union map-
ping, we generate a target tuple with respect to each element
mapping, assigning a unique value to their group attribute
and assigning the probability of the union mapping to one
and only one of the target tuples. Thus, we can generate the
by-tuple core universal mapping in polynomial time as well.

��
Theorem 19 Let cpM be a conditional schema p-mapping
between S̄ and T̄ . Let DS be an instance of S̄.

1. Let Q be an SPJ query over T̄ . The problem of computing
Qtuple(DS) with respect to cpM is in PTIME in the size
of the mapping and #P-complete in the size of the data.

2. Generating the by-tuple core universal solution for DS

under cpM takes linear time in the size of the data and
the mapping.

123

X. L. Dong et al.

Proof By-tuple query answering with respect to conditional
schema p-mappings is essentially the same as that with res-
pect to normal p-mappings, where for each source tuple, we
first decide, which condition it satisfies and then consider
applying possible mappings associated with that condition.
Thus, the complexity of by-tuple query-answering with res-
pect to normal schema p-mappings carries over.

Constructing the core universal by-tuple solution is
also essentially the same as that with respect to normal
p-mappings, where for each source tuple s we first decide
which condition it satisfies and then generate target tuples
that are consistent with s and the possible mappings asso-
ciated with that condition. Thus, the complexity of by-tuple
data-exchange with respect to normal schema p-mappings
carries over as well. ��

References

1. Abiteboul, S., Duschka, O.: Complexity of answering queries
using materialized views. In: PODS (1998)

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for
keyword-based search over relational databases. In: ICDE (2002)

3. Antova, L., Koch, C., Olteanu, D.: World-set decompositions:
Expressiveness and efficient algorithms. In: ICDT (2007)

4. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs:
Databases with uncertainty and lineage. In: VLDB (2006)

5. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing
mapping composition. In: Proceedings of VLDB, pp. 55–66 (2006)

6. Cheng, R., Prabhakar, S., Kalashnikov, D.V.: Querying imprecise
data in moving object environments. In: ICDE (2003)

7. de Rougemont, M., Vieilleribiere, A.: Approximate data exchange.
In: ICDT (2007)

8. Dong, X., Halevy, A.: A platform for personal information mana-
gement and integration. In: CIDR (2005)

9. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncer-
tainty. In: Proceedings of VLDB (2007)

10. Fagin, R.: Inverting schema mappings. In: Proceedings of PODS
(2006)

11. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the
core. ACM Trans. Database Syst. 30(1), 174–201 (2005)

12. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema
mappings: second-order dependencies to the rescue. ACM Trans.
Database Syst. 30(4), 994–1055 (2005)

13. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: PODS (2001)

14. Florescu, D., Koller, D., Levy, A.: Using probabilistic information
in data integration. In: Proceedings of VLDB (1997)

15. Gal, A.: Why is schema matching tough and what can we do about
it. SIGMOD Rec. 35(4), 2–5 (2007)

16. GoogleBase. http://base.google.com/ (2005)
17. Halevy, A.Y.: Answering queries using views: a survey. VLDB J.

10(4) (2001)
18. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D.,

Pollock, J., Rosenthal, A., Sikka, V.: Enterprise information inte-
gration: successes, challenges and controversies. In: SIGMOD
(2005)

19. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace
systems. In: PODS (2006)

20. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: the
teenage years. In: VLDB (2006)

21. Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search
in relational databases. In: VLDB (2002)

22. Lenzerini, M.: Data integration: a theoretical perspective. In: Pro-
ceedings of PODS (2002)

23. Levy, A.Y.: Special issue on adaptive query processing. IEEE Data
Eng. Bull. 23(2), 7–18 (2000)

24. Li, C., Chang, K.C.-C., LLyas, I.F.: Supporting ad-hoc ranking
aggregates. In: SIGMOD (2006)

25. Madhavan, J., Cohen, S., Dong, X., Halevy, A., Jeffery, S.,
Ko, D., Yu, C.: Navigating the seas of structured web data. In:
CIDR (2007)

26. Madhavan, J., Halevy, A.: Composing mappings among data
sources. In: Proceedings of VLDB (2003)

27. Magnani, M., Montesi, D.: Uncertainty in data integration: current
approaches and open problems. In: VLDB workshop on manage-
ment of uncertain data, pp. 18–32 (2007)

28. Nottelmann, H., Straccia, U.: Information retrieval and machine
learning for probabilistic schema matching. Inf. Process.
Manage. 43(3), 552–576 (2007)

29. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

30. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic
schema matching. VLDB J. 10(4), 334–350 (2001)

31. Re, C., Suciu, D., Dalvi, N.N.: Query evaluation on probabilistic
databases. IEEE Data Eng. Bull. 29(1), 25–31 (2006)

32. Sarma, A.D., Dong, X.L., Halevy, A.Y.: Bootstrapping pay-
as-you-go data integration systems. In: Proceedings of SIGMOD
(2008)

33. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to
queries. In: SIGMOD (2005)

123

http://base.google.com/

	Data integration with uncertainty
	Abstract
	1 Introduction
	2 Overview of the system
	2.1 Uncertainty in data integration
	2.2 System architecture
	2.3 Handling uncertainty in mappings
	2.4 Source of probabilities

	3 Probabilistic schema mapping
	3.1 Schema mappings
	3.2 Probabilistic schema mappings
	3.3 Semantics of probabilistic mappings

	4 Complexity of query answering
	4.1 By-table query answering
	4.2 By-tuple query answering
	4.3 Two restricted cases

	5 Top-k query answering
	5.1 Returning top-k by-table answers
	5.2 By-tuple top-k query answering

	6 Representation of probabilistic mappings
	6.1 Group probabilistic mapping
	6.2 Probabilistic correspondences
	6.3 Bayes Nets

	7 Probabilistic data exchange
	8 Composition and inversion
	9 Broader classes of mappings
	10 Related work
	11 Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

