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Abstract

Genomic medicine aims to revolutionize health care by applying our growing understanding of the molecular basis of disease.
Research in this arena is data intensive, which means data sets are large and highly heterogeneous. To create knowledge from data,
researchers must integrate these large and diverse data sets. This presents daunting informatic challenges such as representation of data
that is suitable for computational inference (knowledge representation), and linking heterogeneous data sets (data integration). Fortu-
nately, many of these challenges can be classified as data integration problems, and technologies exist in the area of data integration that
may be applied to these challenges. In this paper, we discuss the opportunities of genomic medicine as well as identify the informatics
challenges in this domain. We also review concepts and methodologies in the field of data integration. These data integration concepts
and methodologies are then aligned with informatics challenges in genomic medicine and presented as potential solutions. We conclude
this paper with challenges still not addressed in genomic medicine and gaps that remain in data integration research to facilitate genomic
medicine.
� 2006 Elsevier Inc. All rights reserved.
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1. Opportunities and challenges of genomic medicine

1.1. Genomic medicine

There are many descriptions of genomic medicine in the
literature [1,2]. At its core, genomic medicine attempts to
elucidate the molecular basis of disease and then translate
this knowledge into clinical practice for the benefit of
human health. There are many potential implications of
genomic medicine for health care [3–5], including: individ-
ualized healthcare based on genetics [4], predictive methods
for disease susceptibility [6], new drug targets for currently
untreatable diseases [7], gene therapy [8], and genetic/mo-
lecular epidemiology which will aid in the study of patho-
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gen transmission and disease profiles of different
populations [9].

The field of genomic medicine can be seen as a vast
mosaic of related disciplines. Due to the rapidly changing
nature of the field it would be impossible to completely
cover the entire scope of genomic medicine, so for the pur-
poses of this review we identify a subset of the disciplines
where the informatics challenges are better understood:
modern human genetics, which attempts to identify sin-
gle-genes responsible for a genetic disease [10], pharmaco-
genetics and pharmacogenomics, which seek to
understand how genes or systems of genes are involved in
differential response by individuals to drug treatment [11],
microarray researchers who look at the expression of thou-
sands of genes at a time, possibly for the purposes of dis-
ease re-classification [12], rational drug design, which
attempts to use all available biological, clinical, and chem-

mailto:brlouie@u.washington.edu


6 B. Louie et al. / Journal of Biomedical Informatics 40 (2007) 5–16
ical knowledge to make informed development decisions
[13,14], and clinicians who attempt to use ‘‘just-in-time’’
information for patient care [15].

1.2. Genomic medicine and data overload

Genomic medicine is, by definition, data intensive. The
Human Genome Project [16] has spawned hundreds of
publicly accessible databases [17] which grow larger and
more numerous every year. There is also increasing diversi-
ty in the type of data: DNA sequence, mutation, expression
arrays, haplotype, and proteomic, to name a few. Systems
biologists, for example, deal with many heterogeneous data
sources to model complex biological systems [18]. The chal-
lenge to genomic medicine is to integrate and analyze these
diverse and voluminous data sources to elucidate normal
and disease physiology.

1.3. Genotype-to-phenotype

Despite the disparate appearances of all the sub-disci-
plines of genomic medicine, there is a common thread: they
are all, in some fashion, concerned with the connection
between genotype and phenotype. A genotype is defined
as an individual’s genetic makeup, defined by his or her
DNA sequence, and a phenotype can be defined as the
‘‘visible properties of an organism that are produced by
the interaction of the genotype and the environment’’ [19].

In the context of genomic medicine, the genotype to phe-
notype connection can be loosely defined as which polymor-
phisms (changes in DNA sequence) or haplotypes (groups of
polymorphisms) apply to which disease or differing respons-
es of a genotype to treatment for a disease [20].

1.4. Genomic medicine and data integration

It is unlikely that any one satisfactory solution will arise
that will solve all the informatics problems faced by
Table 1
A summary of the advantages and disadvantages of data integration architect

Architecture Advantages

Data warehouse Fast queries
Clean data

Database federation Current data
Flexible architecture
No copying of data

Database federation with mediated schema Current data
Flexible architecture
Schema tailored to users

Peer data management systems Current data
Flexible architecture
Schema tailored to users
Mappings between schem
distributed across peers
researchers in genomic medicine. Nevertheless, as the com-
mon thread of the genotype-to-phenotype connection
binds all sub-disciplines in genomic medicine, so may there
be generalized data integration problems shared by each. It
is important to identify these generalized problems as
researchers in data integration attempt to solve just these
sorts of challenges. In fact, research in data integration
may have indeed provided some approaches and concepts
that could prove to be valuable to genomic medicine. Some
relief from data overload could be at hand by aligning the
proper data integration technologies with appropriate, gen-
eralized, data integration problems in genomic medicine.

Data integration and genomic medicine are separate dis-
ciplines and have evolved in relative isolation. Our intent of
this review is to look at the intersection between data inte-
gration and genomic medicine with intent to balance the
computing and the biomedical and highlight potential
bridges between the two disciplines.

2. Review of data integration approaches and concepts

relevant to genomic medicine

There is much literature regarding data integration in
the areas of biomedical informatics and computer science
[21,22]. To complement this body of literature we highlight
the data integration methodologies most relevant to data
integration problems in genomic medicine. Note that we
have tried to identify data integration concepts that are
not simply ‘‘conceptual,’’ but fairly stable technologies that
can be readily applied to identifiable data integration prob-
lems related to the burgeoning field of genomic medicine.
Many of these technologies were used in research projects
that are now commercial systems such as DiscoveryLink
[23], GeneticXchange [24], or TAMBIS [25].

Data integration is fundamentally about querying
across different data sources. The different data sources
could be, but not limited to, separate relational databases
or semi-structured data sources located across a network.
ures

Disadvantages

Stale data
Complex schema
Maintain extra copy of data

Slower queries
Complex schema
Little or no data cleansing

Slower queries
Little or no data cleansing
Mappings from source schemas to mediated schema needed

Experimental
Slower queries
Little or no data cleansing

as
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Within data integration are two orthogonal dimensions
which refer to where data or knowledge about meta-data
resides, and the representation of data and data models.
For the purposes of illustration we divide these dimensions
into two axes: (1) integration architecture, and (2) data and
knowledge representation (Table 1).

2.1. Axis 1: integration architecture (where data resides)

2.1.1. Data warehouses

Data warehousing is the consolidation of all specified
data into a single database with a generalized, global sche-
ma. Data warehouses are considered to be reliable and pro-
vide a researcher with fast access and excellent response
time to user queries. This is a non-trivial aspect since per-
formance is often cited as a key feature by biologists [23].
Since importing of data is under local control, this facili-
tates easier cleansing and filtering of the data.

Consolidating all data into a single location does present
problems. The volume of data may simply be too large for
the warehouse to handle. Updating the warehouse presents
serious maintenance issues and can create problems in that
queries are only as relevant as the latest update [26]. Also, it
is difficult to create a global schema that captures all the
nuances of diverse data types. Often, as a consequence,
the richness of the individual data sources is lost if one cap-
tures only the common elements in the global schema or
alternatively the complexity of the global schema needed
to represent all the source schemas becomes unwieldy.

Given these constraints, warehouses may be best suited
for the creation of highly curated datasets focused on a spe-
cific and narrow area of research. The UCSC Genome
Browser [27], the EnsEMBL Database Project [28], Data-
Foundry [29], and BioMolQuest [30] are examples of data
warehouse approaches in biology. Chaudhuri and Dayal
[31] also have published a survey of data warehousing
technology.

2.1.2. Database federations

Unlike a data warehouse, a database federation leaves
data at the source. In a database federation, underlying
databases remain autonomous and may be distributed
across a network. The federation maintains a common
data model and relies on schema mapping for integration
of the disparate source, usually facilitated by software
programs that interface with the source [32,33], often
called ‘‘wrappers’’ [34]. The federation appears to the user
as a single database [35]. Federations relieve the ‘‘tempo-
ral’’ problems of warehouses since the data resides at the
source and therefore is always updated. BioKleisli was a
pioneer in applying these data integration approaches to
biological data [36]. Using these approaches they were
able to answer one of the ‘‘impossible’’ Department of
Energy queries, namely: ‘‘Find for each gene located on
a particular cytogenetic band of a particular human chro-
mosome, as many of its non-human homologs as
possible.’’
Data cleansing is difficult in a federation. No data is
housed locally so data cleansing must be done on-the fly
[37]. Performance can also suffer because it is dependant
on the query load capacities of the other members of the
federation. Federations use a common data model and
therefore face the same difficulties as warehouses in repre-
senting diverse data types. Database federations are best
suited for situations where a researcher requires the most
up-to-date information, or where the researcher must inte-
grate a large number of related proprietary and/or public
data sources. OPM [38], ACEDB [39], and the Entrez
cross-database search [40] are examples of database
federations.

2.1.3. Database federations with mediated schemas

A problem with database federations can arise in deal-
ing with the various source schemas of different databases
in a federation. A mediated schema addresses this problem
[41]. Databases in the federation can not only be relational
but can be semi-structured data sources [42]. In general, a
mediated schema is a graph representing all entities and
relationships in a domain of discourse with entities as
nodes and relationships as edges [26]. Mediated schemas
act as middleware in a database federation where data
sources are mapped to the mediated schema by defining
the entities they contain [43,44]. Queries are then posed
to the mediated schema rather than the union of all of
the source database schemas. This allows the user to pose
much more general questions that cannot be answered
using a traditional relational database [25]. They can also
offer the advantage in that mediated schemas can be more
focused and tailored relatively easily for a particular user
or set of queries. Given a collection of data sources to inte-
grate, a user can develop a mediated schema focused on the
data of interest, allowing a rich model of a particular subset
of the data they are interested in without having to develop
a global schema that must take into account all possible
queries or data of interest to all potential users. Mediated
schemas can also be ‘‘modular,’’ in that a number of then
can be created and then swapped in and out as needed.

Mediated schemas may best be suited to situations
where researchers need to ask highly complex questions
that span disparate knowledge domains. The BioMediator
data integration systems is a federated database that uses a
mediated schema to ask diverse questions of data sources
[45].

2.1.4. Peer data management systems

One of the main drawbacks of database federations with
mediated schemas is the challenges in developing a single
mediated schema that encompasses an entire domain of
discourse. This limitation is somewhat analogous with the
difficulties in creating a global database schema in data
warehouses and federated databases. A mediated schema
is easily developed for a small set of data sources but runs
into scaling and maintenance issues as the number of
sources increases. A possible way around this limitation



8 B. Louie et al. / Journal of Biomedical Informatics 40 (2007) 5–16
is to develop multiple tailored and focused mediated sche-
mas and integrate the mediated schemas in what is known
as a peer data management system or PDMS.

A PDMS is an evolutionary step in data integration sys-
tems [46]. In a PDMS each data source provides a semantic
mapping to either one or a small set of other data sources,
or peers. This creates a semantic network of peers which
the PDMS can traverse to answer a query.

Peer data management systems can be seen as an excep-
tion to our rule of identifying only stable technologies.
Currently, there is no implemented peer data management
system that we can cite as being a successful data integra-
tion project in genomic medicine. We mention peer data
management systems here in that they are the next step
beyond mediated databases and deserve mention here as
an evolutionary step.

A PDMS addresses the problem of creating a global
mediated schema by allowing discrete groups to create
their own local, specialized mediated schemas and then
providing appropriate mappings to glue together semanti-
cally related peers on the network. There are many compet-
ing projects regarding peer data management systems, a
couple of which are the Hyperion Project [47], and the
Piazza Project [48].

2.2. Axis 2: data and knowledge representation

The following are data and knowledge representation
formalisms that can be employed in any data integration
architecture. There are various advantages and disadvan-
tages associated with each. Fig. 1 provides a summary of
modeling languages in data and knowledge representation.

2.2.1. Relational schemas

The traditional relational data model [49,50] is centered
around the concept of a table (or relation) which consists
of rows (tuples) and columns (attributes). The relational
model is a well-understood and robust method of repre-
senting data but one of its main criticisms is that modeling
complex, hierarchically structured objects such as biologi-
cal entities is not immediately intuitive to anyone except
experienced database designers [51]. Also, the relational
data model forces precise, unambiguous elucidation of
relationships. The data must be regular and complete, or
‘‘structured.’’ Unfortunately, our understanding of rela-
tionships in biological systems are rarely precise. Despite
these drawbacks, the relational schema is by far the most
common, familiar, and ubiquitous data representation
model [52].
OWL

RDFGraphical

Database Relations 

Semi-Structured

XML

Fig. 1. A summary of modeling languages in data and knowledge
representation.
2.2.2. Semi-structured data

Semi-structured data frees you from the rigid structure
of the traditional relational data model. Semi-structured
data is essentially data with a series of labels and associ-
ated values. It can be represented graphically as nodes
(objects) connected by edges to values. XML [53] is a for-
mat recommended by the WWW Consortium [54] for
data exchange on the web and is perfectly suited for
describing semi-structured data [55]. The semi-structured
data model is not as well understood as the structured
model such as in the areas of data validation and search,
but it permits more natural modeling of biological entities
because it allows features like nesting [56]. A key limita-
tion of XML is that it is difficult to model complex rela-
tionships; for example, there is no obvious way to
represent many-to-many relationships, which are needed
to model complex pathways. The PharmGKB project
has used XML in its efforts to build a pharmacogenomics
knowledge base [57].

Currently, most information on the World Wide Web is
published in HTML, which is suitable for humans but less
than ideal for computers. The Semantic Web is a vision of
the World Wide Web as a globally linked, semi-structured
database [58] expressed in RDF [59], a semi-structured
data model in which arbitrarily complex relationships can
easily be modeled. The rationale is that data published
on the web are useful in some contexts and not others.
These data are ‘‘hidden’’ from computers in that it is in
HTML, a form not optimal for automated processing
[60]. The Semantic Web utilizes XML for its syntactic
foundation [61], and ontologies to give explicit meaning
to information [62].

2.2.3. Ontologies

An ontology is defined as a ‘‘specification of a con-
ceptualization’’ [63]. It is a description of concepts and
relationships that exist for a particular domain of dis-
course, such as anatomy [64]. In regards to data integra-
tion, a mediated schema is essentially an ontology
serving as middleware for a database federation. Within
the Semantic Web, these ontologies are expressed using
OWL [62], an ontology language built on top of RDF.
Fig. 2 provides an example of gene concepts expressed
in XML, and OWL.

Ontologies specify object classes, relationships, and
functions [22]. In other words, ontologies are an embodi-
ment of knowledge suitable for a computer. This has
enormous implications not only in that a computerized
reference source has greatly increased expressive power
in regards to queries [25,36,45,65], but also in that a data
or reference source can also be a source of inference (rea-
soning). Inferring across data sources is accomplished
through computations that traverse a network of entities
and relationships within an ontology. For example, Karp
and Collado studied the Escherichia coli genetic network
represented within the pathway database EcoCyc [66],
and were able to elucidate a number of interesting



<?xml version="1.0"?>
<GeneList>
  <Gene symbol="CREB-17A" organism="D. melanogaster">
    <Sequence>ACTGCGACCGCCCTGCGCT</Sequence>
    <Sequence>ACTGCGACGGCCCAGCGCT</Sequence>
    <Product>cAMP-regulated enhancer-binding protein</Product>
    <Function id="0007616" status="confirmed"><Term>long-term memory</Term></Function>
  </Gene>
  <Gene symbol="CER" organism="D. melanogaster">
    <Sequence>TTCCGTCGCTAGCT</Sequence>
    <Function id="0007616" status="inferred"><Term>long-term memory</Term></Function>
  </Gene>
</GeneList>

CER

TTCCGTC
GCTAGCT

CREB-17A

ACTGCGACCG
CCCTGCGCT

ACTGCGACGG
CCCAGCGCT

cAMP-regulated
enhancer-binding

protein

Fly Genes:
Gene  Organism.(D melanogaster)

Sequence

Type

Type

SequenceSequence

Product

Subclass-Of

Status Confirmed

InferredStatus

Function

Function

Long-term
Memory Memory

Fig. 2. Top: sample XML describing genes involved in long-term memory. Nested within the gene elements, are sub-elements related to the parent. The
first gene includes two nucleic acid sequences, a protein product, and a functional annotation. Additional information is provided by attributes, such as the
organism. This example illustrates the difficulty of modeling many-to-many relationships, such as the relationship between genes and functions.
Information about functions must be repeated under each gene with that function. If we invert the nesting (i.e., nesting geners inside function elements),
then we must repeat information about genes with more than a single function. Bottom: information about genes using RDF and OWL. Both genes are
instances of the class Fly Gene, which has been defined as the set of all Genes for the organism D. melanogaster. The functional information is represented
using a hierarchical taxonomy, in which Long-Term Memory is a subclass of Memory.
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properties about the genetic network of E. coli, such as
negative autoregulation being the dominant form of feed-
back for transcription [65]. This sort of reasoning enables
researchers to discover global properties of the ontology
that would be extremely difficult with unaided human
cognition.

Ontologies also have the added benefit of facilitating
interaction between researchers in different knowledge
domains and enabling interoperability between databases
and programs, both of which are vital to future collabora-
tive work in genomic medicine [67]. The Gene Ontology
Consortium [68] is attempting to produce a controlled gene
product vocabulary applicable to all organisms and has
many, though not all of the attributes of a formal ontology
[69] (see Fig. 3).
3. Review of genomic medicine with relevance to data

integration

The challenges researchers in genomic medicine face in
integrating voluminous amount of heterogeneous data are
readily apparent in the literature [70]. Indeed, it has been said
that researchers are ‘‘trying to swim in a sea of data’’ [71]. As
previously discussed, genomic medicine is complex. We illus-
trate some of the more ‘‘well-known’’ categories of genomic
medicine and identify informatics problems within each.

3.1. Modern human genetics

Genetics, in regards to medicine, studies diseases caused
by a single gene. Elucidation of these single-gene diseases
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can involve studying their inheritance through large fami-
lies [10].

Researchers in genetics often have to traverse several
data sources to answer questions. This can present prob-
lems such as having to know the query syntax and source
contents of a great number of data sources. It can even
be difficult to navigate using a single gene name due to
the dynamic nature of the data sources and lack of stan-
dards [72]. The queries posed by researchers can be vague
yet highly complex, essentially requiring a ‘‘join’’ of multi-
ple databases to answer it [52]. Geneticists also require
records that combine clinical and genetic information to
assess the relevance of molecular markers [73]. Their work
can also be made easier if tissue samples are linked to accu-
rate medical records and genealogic information [74].

3.2. Genomics in clinical medicine and epidemiology

Clinical medicine aims to evolve into the era of molecu-
lar medicine. Diagnosis and treatment of disease will be
based on knowledge of the underlying molecular defects
rather than evaluation of the overt symptoms [2]. Epidemi-
ology aims to use molecular information to understand
transmission and virulence patterns of microbes or to uti-
lize ‘‘predictive’’ genes to assess susceptibility of a popula-
tion to a disease [9].

Clinicians require access to complete patient informa-
tion as well as medical knowledge for ‘‘just-in-time’’ infor-
mation at the point of care [15]. This includes the use of
relevant patient genetic data that need to be put in context,
usually through connection with public databases. The
clinical patient record of the future will require integration
of clinical and genomic data along with sound methodolo-
gies for acquiring, storing, and analyzing them [9,75].

3.3. Microarray studies

Microarrays are a relatively new technology and are
used to measure the transcription levels of thousands of
genes from a tissue sample in a single experiment [76].
The conventional wisdom is that by comparing expression
levels of various genes from normal and diseased tissue it
will be possible to produce a definition of a disease state
[77].

Genes are represented on a microarray as ‘‘spots,’’ or
uniquely identifying subsequences of the genes. In order
to make sense of the experiment, external annotation is
needed for each gene [13]. The external annotation often
comes from public domain databases which are located
in various places and is constantly changing and being
updated [51]. There is also the notion of needing to con-
struct valid paths between the datasets (nucleo-
tide fi gene fi protein) in order to capture proper
semantics [78]. Microarray data, being essentially expres-
sion information regarding genes, must be analyzed in
the context of clinical and epidemiological data to make
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sense of the experiments. To facilitate this, researchers
could benefit from having access to this integrated
information.

3.4. Pharmacogenetics and pharmacogenomics

Patients with different genetic makeups can have differ-
ent responses to drug treatment [79]. Pharmacogenetics
and pharmacogenomics attempt to understand how indi-
vidual genetics plays a role in variation to drug treatment
or how systems of genes are involved in modulating drug
response [11,80]. The discovery path can be based on a
genotype-to-phenotype approach, summarized as: (1) iden-
tify suspected gene or system of genes, (2) identify varia-
tions within gene(s), (3) search for phenotypes associated
with variation, and (4) confirm clinical relevance. A second
approach, phenotype-to-genotype, includes the following
steps: (1) Identify a phenotype that shows variation, (2)
Search for genes that may explain this variation, (3) char-
acterize genetic variation and check for association with
the phenotype, and (4) confirm genetic basis for variation
and its clinical relevance [81].

Research in pharmacogenetics and pharmacogenomics
involves integration of highly diverse types of data includ-
ing genetic, genomic, phenotypic, and clinical. The type of
data schema to model these diverse data types is inherently
complex and must change often to incorporate ever-in-
creasing knowledge in the field [57]. An essential require-
ment for research in pharmacogenetics and
pharmacogenomics is a curated knowledge base derived
from high-quality, diverse data sets.

3.5. Rational drug design

Drug discovery requires an enormous investment of
resources [82]. There is a great need to make informed deci-
sions about proceeding with the costly development of a
drug [13]. To increase productivity, the pharmaceutical
industry would like to streamline the process by doing
much of the work computationally [14]. Also, much recent
work in drug discovery revolves around the segregation of
populations according to disease subtypes in order to pre-
vent failure of a drug due to supposed inefficacy [12].

Rational drug design involves integration of diverse,
heterogeneous data types [13] which can include highly
proprietary data. Researchers often ask vague questions
that span multiple data sources [23]. The ultimate goal of
rational drug design is molecular modeling of disease, pre-
diction of specific compounds which interact with identified
proteins, identification of proper patient population
through disease sub-classification, and predicting absorp-
tion, distribution, metabolism, and excretion (ADME) of
a drug ‘‘in silico’’ [14].

Microarrays are highly applicable to research in phar-
macogenetics, pharmacogenomics and rational drug design
[12], therefore the importance of relevant clinical and epi-
demiological data applies here as well.
3.6. Biobanks

Biobanks or populational repositories [83], like the
centralized anonymous healthcare database in Iceland,
integrate coded medical data resources that can be ana-
lyzed together with coded genealogy and genotypic
information. Human genetic research databases store
collections of information on large number of tissues
and samples and manage large amounts of molecular
epidemiological data of different populations (both of
patient and control individuals). The integration of these
genetic, clinical, environmental and lifestyle data will
facilitate the unravelling of polygenetic disease causality
and complex gene-environment interactions existent in
disease pathogenesis and causation. The P3G Consor-
tium (Public Population Project in Genomics) [84]
includes among its objectives, the development of a
common, open and accessible dataset and the building
of a unique knowledge base for international collabora-
tion and sharing of data.

4. Application of data integration concepts and approaches to
genomic medicine

Theoretically speaking, a single omnipotent database
containing the sum total of all biomedical knowledge
would solve the data integration problems outlined above.
As it turns out, there are strong arguments against this
solution [52]. Research in genomic medicine is inherently
complex and data intensive. The data is highly heteroge-
neous and, given political barriers it is unlikely that a single
informatics solution will arise that solves all problems [22].
Taking this into account, there exist categories of general
informatics problems in genomic medicine, some of which
were introduced above. Approaches and concepts in the
field of data integration can potentially be applied to pro-
vide partial relief from these problems. It is important to
note that an improper data integration solution can create
more problems that it solves, at least in wasted time and
effort. You would not want to buy a semi-truck to com-
mute a long ways to work and then have to deal with a con-
strained parking situation and likewise you do not want to
buy a hybrid vehicle to haul loads of freight. Each data
integration solution has optimal cost to benefit ratio so it
is important to align these to their proper informatics prob-
lems. Table 2 summarizes the examples described in the
text.

4.1. Data warehouse approaches

Data warehouses may be best suited for the creation of
databases where performance, local control, and privacy
are key issues such as in a clinical genetics database [85],
in a biobank, or in highly curated reference data sources
such as PharmGKB [86], or a clinical trials database for
drug discovery [87]. In these cases, there is usually a high
amount of human ‘‘interaction’’ with the data, often in



Table 2
Examples of application areas of informatics in genomic medicine and proposed most appropriate data management techniques

Human
genetics

Genomics in
Clinical practice

Microarrays PharmacoGx Rational
drug design

Biobanks

Data storage Data warehouses
Database federation
Mediated schema
Peer data management

Data and knowledge representation Ontologies
Semi-structured data

A two-dimensional representation is shown in Fig. 4.
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the form of quality control and curation. This provides a
rate-limiting step so rapid change in data content or sche-
ma is alleviated, thus reducing one of the major problems
most often identified with data warehouses.

4.2. Database federation approaches

Researchers who need to dynamically integrate vast
amounts of related data located in disparate locations
where the data sources may possibly be undergoing rapid
change in data model or data content would be best served
by a database federation rather than data warehouses.
Microarray researchers may require annotation for each
of the possibly thousands of spots on the array and the
data they require may reside in large databanks located
across a network [51]. The volume of data may simply be
too great to house locally, due to limitations in data ware-
house technology or resources of the researchers. Also,
annotation data is notorious for rapid change. Researchers
who have identified these problems such as in the case of
gene expression studies [78], or who have formed ad hoc
research collaborations [88], may be best served by data-
base federations since no data, other than proprietary, need
be housed locally and since data is kept at the source, it is
always up-to-date.

4.3. Mediated schema approaches

Researchers may only have a general notion of the ques-
tions they want to ask [45]. The genotype-to-phenotype
correlation in genomic medicine requires answering vague
questions that span multiple disciplines. Mediated sche-
mas, serving as middleware to database federations, may
help in this regard as they facilitate ‘‘general’’ queries and
integration of diverse types of data. Mediated schemas
are good productivity tools in that researchers only have
to understand one schema that applies to the entire feder-
ation, rather than having to understand the individual
schemas of the sources. They also have the advantage of
being ‘‘modular,’’ in regards to the fact that it is unlikely
that one schema will serve the needs of many groups of
researchers. Any number of specific mediated schemas
can be created to meet the needs of a particular group
and swapped in an out of a federation, quite unlike the
fixed schema of a data warehouse. Researchers in rational
drug design and pharmacogenetics and pharmacogenomics
often have to ask general queries that span knowledge
domains [23] and may benefit from the use of mediated
schemas.

4.4. Peer data management system approaches

Peer data management systems are a future possibility
for data integration in genomic medicine. In this model,
data sources remain autonomous but can connect to an
existing, interwoven, information fabric by interacting
through a relevant domain ontology and providing appro-
priate concept mappings. The world of disparate data
sources essentially becomes a self-organizing, semantic net-
work. This model could be suitable for those systems ori-
ented toward facilitating the navigation between genotype
and phenotype, as in human genetics or clinical genomics.
The Piazza peer data management system represents
important research in this regard [89]. This model is not
without precedent as a similar ‘‘knuckles-and-nodes’’
approach to the problem of data integration has been pro-
posed in the literature [52].

4.5. Ontologies

Ontologies aid in the integration of diverse data that
spans disciplines. In other words, they can help to
resolve the semantic inconsistencies that arise when
attempting to integrate data from different sources. For
example, the definition of ‘‘vector’’ is different in molec-
ular biology and in mathematics [51]. Researchers who
attempt to integrate data from disparate knowledge
domains, such as in rational drug design, pharmacoge-
netics and pharmacogenomics, or within a knowledge
domain may benefit by developing ontologies. The
genomics working group of the American Medical Infor-
matics Association [90] recently had a meeting at the
MedInfo 2004 conference [91] that focused on ontologies
in genomic medicine including representation of molecu-
lar knowledge in computable form as in Flybase [92],
representation of phenotype in the Foundational Model
of Anatomy [93], and cross-domain integration of bio-
medical information [94].
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4.6. Semi-structured data

XML is a format that is better for representing complex,
hierarchical biological objects for human visualization.
Also, much research is ongoing in regards to being able
to query XML documents [95], essentially giving an
XML document the query capabilities usually associated
with databases. An ontology is needed to control nomen-
clature and to provide semantic links between XML docu-
ments. Integration of data with complex data models could
be best served using XML, such as in PharmGKB [57], and
in conjunction with mediated schemas and database feder-
ations as in BioMediator [45].

There are a large number of ‘‘ad hoc’’ data integration
solutions that exist today in genomic medicine [27,96–98].
These solutions are highly specialized for a specific pur-
pose, such as genetics [99]. They are very useful in their
own right but likely would not be ‘‘portable,’’ or applicable
to researchers in different domains, such as medicinal
chemistry and biology. The field of data integration
attempts to provide general solutions and we have attempt-
ed to identify those general data integration solutions that
apply to informatics problems in genomic medicine
(Fig. 4).

5. Gaps remaining in data integration research to facilitate

genomic medicine

There should be no doubt that numerous gaps remain
regarding data integration to facilitate genomic medicine
and it is certain that the number of gaps will increase as
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Fig. 4. The axes of data integration architecture and knowledge representation
continuum according to their identified challenges regarding data integration
more data becomes available. The gaps reviewed here
reflect some of the more urgent needs and challenges iden-
tified both in the literature and in our overview of genomic
medicine above.

5.1. Data availability

The number of public databases in molecular biology is
large and growing [17]. Access to this data has facilitated
rapid advances in the field of bioinformatics [100]. Similar-
ly, researchers in genomic medicine require access to large
clinical data sources for integration with molecular biology
databases to make inferences on the genotype-to-pheno-
type connection. Some of the more well-known clinical dat-
abases include OMIM [101], GeneClinics [102], and
Medline [103], but the number of publicly available clinical
databases is small in comparison to molecular biology. It
appears that the reason for this revolves around issues
regarding privacy and data modeling and collection [104].

5.1.1. Privacy issues

The issue of privacy is not as simple as it may seem. It is
not that easy to ‘‘de-identify’’ and individual in that an
individuals genome is essentially a fingerprint and thus
uniquely identifying. In addition to individual privacy
there is also the open issue of the privacy of the family of
an individual with a ‘‘defective’’ genome. For example, if
a parent is diagnosed with Huntington’s disease, a fatal
autosomal dominant disorder, then there is a minimum
25% chance that any of their children will also have the dis-
ease. Even worse, if a child tests positive for Huntington’s
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and knowledge representation.
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disease then there is a 100% chance that at least one parent
will have the disease.

The issue of privacy versus access to data is a battle-
ground in genomic medicine as well as healthcare. Data
sharing is challenging in areas such as pharmacogenomics
[105] in that they are inherently about linking genotype
to clinical phenotype, such as individual response to drug
treatment. In the healthcare arena, individual medical
records are increasingly moving from paper to electronic
format. The current solutions such as informed consent,
de-identification, and mediation, are apparently inadequate
[81,104]. For example, medical data released by medical
institutions may appear to be anonymous but can often
be re-identified [106]. The Health Insurance Portability
and Accountability Act (HIPAA) was recently enacted to
address medical records in the electronic era. Debate over
HIPAA illuminates the competing interests of privacy
advocates who argue for individual autonomy over medical
records and healthcare industry advocates who argue for
freedom to use information to aid treatment decisions
and to further research [107]. The interdisciplinary nature
of genomic medicine requires access and sharing of data
to reap its potential benefits [20].
5.1.2. Data issues

The complexity of the clinical record has been identi-
fied as a major barrier to the collection of clinical data
[104], and significant gaps have been identified between
molecular biological data and its relevance to the clinic
[73]. Update issues as a barrier to the usefulness of pub-
lic databases [72] have been identified as well. Also, there
is much useful information in scientific papers but is in
the form of natural language text. Research in natural
language processing and text mining is needed to popu-
late databases which could be an enormously valuable
resource [13,81].
5.2. Lack of standards

It has been identified that the lack of standardized vocab-
ularies has hampered development of databases in the clini-
cal arena [104]. Clinical data, or phenotype, is difficult to
precisely define and represent [20,81], although some rele-
vant initiatives have been recently proposed, such as the
Human Phenome Project [108], Phenofocus initiative [109],
and the IEEE: Bioinformatics Standards Committee [110].

Genomic medicine will require integration of diverse
complex data types including genomic, proteomic, clinical,
and even pharmacological and chemical [23]. Standards
will be required for representation of clinical and genetic
information to ensure proper semantic integration of heter-
ogeneous data, and also for communication standards to
ensure interoperability between disparate data sources
[20]. HL7 [111] and SNOMED [112] are examples of exist-
ing foundational standards that can be used as tools for the
development of future standards.
5.3. Bridging disciplines: collaborations or convergence?

For molecular biological information to be useful to
genomic medicine it must be analyzed in context with clin-
ical information [73]. Genetic and genomic information
will have to be managed over many levels of health infor-
mation from the molecular to the population level [80].
Researchers from all backgrounds will have to be able to
understand the interrelations of all disciplines involved in
genomic medicine [20]. Neuroinformatics could be consid-
ered a ‘‘bridging’’ discipline in that it involves managing
information at many different levels of neuroscience from
the micro to the macro-anatomic, and essentially ‘‘con-
nects’’ genomic and clinical information in the area of neu-
roscience research [79]. Similar approaches are being
pursued through what we could name ‘‘integrated
approach to the study of diseases,’’ including examples
such as cancer informatics or cardiovascular informatics.
All of this suggests close collaboration is needed between
medical informatics and bioinformatics, as was illustrated
in the European project BIOINFOMED, and it is even
suggested that they should converge into a single disci-
pline [20]. Biomedical Informatics is the emerging disci-
pline that aims to put these two worlds together so
that the discovery and creation of novel diagnostic and
therapeutic methods is fostered. The INFOBIOMED
[113] network of Excellence, recently funded by the Euro-
pean Commission, aims to set a durable structure for the
described collaborative approach at a European level,
supporting the consolidation of BMI as a crucial scientif-
ic discipline for future healthcare. There are already
many synergies between medical informatics and bioin-
formatics and a convergence of the two fields could
remove a major impediment to research in this arena,
namely the differing motivations of collaborators [79],
as well as sharing approaches to the facilitation of geno-
mic medicine [75].

6. Conclusion

Research in genomic medicine and data integration has
proceeded in relative isolation, although there have been
some attempts at cross-pollination [23,36,114]. Our review
of the literature in genomic medicine and data integration
has illuminated the possibility of greater synergies between
the two in the identification of generalized informatics
problems in genomic medicine and applicable concepts
and approaches in data integration.

Certainly there are many gaps and challenges that
remain for data integration research to facilitate genomic
medicine. The creation of a National Health Information
Infrastructure [115].will address many of these gaps and
challenges and will be needed in order for genomic medi-
cine to be effectively applied in healthcare. Genomic medi-
cine is ambitious and will require enormous scientific and
political will to implement, but the implications and bene-
fits are to great to ignore.
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