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Abstract 
This paper considers how labor market factors have shaped early returns to investment in big data technologies. 
It tests the hypothesis that returns to early investments in Hadoop—a key big data infrastructure technology—
have been concentrated in select labor markets due to the importance of aggregate corporate investment levels 
within a labor market for producing a supply of complementary technical skills during the early stages of 
technology diffusion. The analysis uses a new data source—the LinkedIn skills database—enabling direct 
measurement of firms’ investments into emerging technical skills such as Hadoop, Map/Reduce, and Apache 
Pig. Productivity estimates indicate that from 2006 to 2011, firms’ Hadoop investments were associated with 
3% faster productivity growth, but only for firms a) with significant existing data assets and b) in labor 
networks characterized by significant aggregate Hadoop investment. Evidence for the importance of labor 
market concentration disappears for investments in mature data technologies, such as SQL-based databases, for 
which the skills are diffused and readily available through universities and other channels. These findings 
underscore the importance of geography, corporate investment, and channels for technical skill acquisition for 
explaining differences in productivity growth rates across labor markets during the spread of new IT 
innovations. 
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1.0 Introduction 

US businesses appear to be on the cusp of a data-driven revolution in management.  

Firms capture enormous amounts of fine-grained data on social media activity, RFID tags, web 

browsing patterns, consumer sentiment, and mobile phone usage, and the analysis of these data 

promises to produce insights that will revolutionize managerial decision-making. Because this 

type of data analysis has, in many cases, outpaced firms’ existing technological capabilities, there 

has been growing interest in the potential economic impact of investment in “big data” 

technologies, which enable data analysis at a scale exceeding the capabilities of existing database 

systems, and which many academic and industry observers argue will drive a new wave of 

innovation (McKinsey 2011; Brynjolfsson and McAfee 2011). Early big data adopters, however, 

face significant challenges.  One in particular -- difficulties acquiring the technical skills required 

to support big data tools -- has attracted significant media attention (Rooney 2012 is an 

example).1  A recent article describing Sears’ implementation experiences with Hadoop, a 

technology that is central to the early wave of big data investment, captures the tradeoffs 

managers face: “Enter Hadoop, an open source data processing platform gaining adoption on the 

strength of two promises: ultra-high scalability and low cost compared with conventional 

relational databases … The downside of Hadoop is that it's an immature platform, perplexing to 

many IT shops, and Hadoop talent is scarce. Sears learned Hadoop the hard way, by trial and 

error. It had few outside experts available to guide its work when it embraced the platform in 

early 2010” (Henschen 2012).  Amidst rapidly growing demand for big data technologies, Sears’ 

experience reflects broader concerns that difficulties acquiring big data skills will limit the rate at 

which these technologies lead to productivity growth (McKinsey 2011). 

These observations reflect a gap in the academic literature on IT-enabled growth. Prior 

research focuses on the effects of organizational factors in explaining variation in IT returns 

(Melville, Gurbaxani, and Kraemer 2004 provide a review).  However, recent work finds 

evidence of systematic differences in growth rates across labor markets during large waves of 

investment in new IT innovations (Forman, Goldfarb, and Greenstein 2012), although most inputs 

required for implementing new IT practices are available at common prices throughout the US.  

The speed at which knowledge barriers fall, however, can impact the rate of diffusion of IT 

innovations and differ across labor markets (Attewell 1992; Fichman and Kemerer 1997).  In 

particular, differences in the supply of workers with the skills complementary to the new 

information technologies, especially during the early diffusion period when there are few 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1The use of big data technologies has been associated with the emergence of new technical skills such as Hadoop, 
Map/Reduce, Apache Pig, Hive, and HBase.	  
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channels through which to acquire these skills, may explain differences in the rates at which firms 

in different labor markets are able to unlock value from new IT innovations. 

This paper examines how labor markets have shaped early returns to investment in a key 

big data technology—Hadoop-based systems.2  It tests the hypothesis that returns to Hadoop 

investments have been concentrated in select labor markets due to the importance of aggregate 

corporate investment within a labor market as a determinant of the early stock of technical human 

capital required to support firms’ own Hadoop investments.  Because technical know-how is 

embodied in IT labor, external corporate investment within the same labor market improves the 

skill content of the firm’s own labor market by pooling demand for emerging skills and 

facilitating on-the-job learning for workers who can subsequently be hired. This argument is 

related to the literature on how external R&D investment impacts the success of a firm’s own 

R&D efforts (Jaffe 1986; Cassiman and Veugelers 2006) and a related literature on the 

knowledge-based micro-foundations of agglomeration (Saxenian 1996; Porter and Stern 2001). 

As with R&D, firms that invest in new information technologies should derive significant 

benefits from the related investments of other firms while the complementary know-how is 

scarce. During this period, hiring employees from other early adopters may be an especially 

important channel through which to acquire technical expertise. As the technologies mature and 

alternative channels emerge through which workers can acquire the complementary skills (e.g. 

university degree programs), differences in labor market thickness, “spillovers” from the 

investments of nearby firms, and the performance advantages of being located in specific labor 

markets should decline, which is consistent with a literature on how the geographic concentration 

of production changes as spillovers weaken (Desmet and Rossi-Hansberg 2009). For data 

technologies, this leads to three testable predictions, a) that investment in emerging data 

technologies should be concentrated in select labor markets, b) that investments in these 

technologies should yield higher returns in these labor markets, and c) that the advantages of 

labor market concentration should disappear for investments in mature data technologies. 

Testing these hypotheses requires data that can distinguish the investments firms make in 

emerging data technologies from investments in mature data technologies. The primary 

innovation in this paper is analysis of a new data source describing technical skills for a large 

fraction of the US-based IT workforce, collected from LinkedIn, a popular online professional 

network3 on which participants post employers and occupations, professional technical skills such 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Section 2 provides a brief technological overview of big data technologies and Hadoop-based systems.	  
3 See http://www.linkedin.com. These data were analyzed while the author was visiting LinkedIn. 
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as SQL, as well as emerging skills such as Hadoop, HBase, and Apache Pig.  This data source is 

used to measure firms’ investments in human capital complementary to specific technologies. 

The construction of measures using data from online labor market intermediaries raises 

several concerns—such as those related to sampling—that merit a longer discussion and are 

explicitly addressed later in the analysis.  On the other hand, the granularity of this data source 

provides advantages over measurement approaches used in the prior IT value literature. Earlier 

work measures the returns to specific technologies using data collected from firms or software 

vendors (e.g. Hitt, Wu, and Zhou 2002). However, the analysis of labor markets for skills 

complementary to specific IT innovations has been largely absent from the empirical literature. 

This is surprising because value from technological investment is determined in part by the 

supply of professionals who can translate technologies into business outcomes, and the economic 

importance of these professionals is reflected in wide-ranging policy discussions on the 

importance of IT labor supply for national competitiveness. Most existing IT workforce studies 

have been occupation-level analyses, but how supply adjusts to demand in markets for skills 

complementary to specific technologies, such as big data technologies, is likely to be important 

for understanding temporal and regional dynamics in the growth resulting from new IT 

innovations. Therefore, data on the fine-grained structure of skills within the IT labor force are 

well suited for understanding how labor markets impact returns to new technological innovations. 

The empirical evidence is broadly supportive of the three hypotheses stated above.  At 

the time of data collection, over 30% of workers with Hadoop skills were employed in Silicon 

Valley, compared with 4% of total US IT employment in that region. Mature technical skills were 

much less geographically concentrated. Estimates from short-run demand equations are consistent 

with complementarities between a firm’s own Hadoop investments and the investments of other 

firms in its labor market. Direct complementarities tests indicate that firms’ Hadoop investments 

yield higher returns in Hadoop-intensive labor markets. The most robust productivity estimates 

indicate that the output elasticity of firms’ Hadoop investments is about 3%, and that these returns 

are principally captured by firms that are in data-intensive industries and are located in Hadoop 

intensive labor markets. On the other hand, the estimates indicate no measurable returns to 

Hadoop investments made outside of Hadoop intensive labor markets. By comparison, the 

evidence for labor market complementarities disappears for investments in mature data 

technologies, such as SQL-driven databases, for which the technical skills are widely available—

the returns to investments in mature data technologies appear to be unaffected by the labor 

markets in which the investments are made. These findings are robust to several specifications as 
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well as tests that place bounds on the effects of various sources of estimation bias as well as 

measurement error in the skills data. 

These findings are closely related to several academic literatures. First, they contribute to 

an emerging literature on the value of modern data analytic technologies (Brynjolfsson, Hitt, and 

Kim 2011; Barua, Mani, and Mukherjee 2012). Empirical evidence of the benefits of the new data 

technologies has been primarily restricted to case evidence (discussed below). There is still an 

active debate about whether and under what conditions big data technologies have driven 

generalized economic gains (e.g. see Glanz 2013 and Harris 2013 for contrasting viewpoints).  

There is a need, therefore, for large-sample evidence of the impact of these investments on firm 

performance, as well as analysis of firm-level factors that can impact the magnitude of these 

returns.  The few existing empirical studies on data analytics do not distinguish returns to 

emerging data technologies from returns to traditional database systems, at least in part due to 

measurement limitations. In fact, it may be uniquely difficult to assess the impact of new data 

technologies using archival data on hardware or software expenses due to the reliance of these 

technologies on open source software and commodity hardware.4  Instead, investments in 

complementary human capital may command a larger share of expenditures for big data 

technologies than for earlier information technologies, and data on skills may therefore provide 

benefits for empirically distinguishing firms’ investments in specific data technologies. 

Second, this paper extends the broader IT value literature by providing evidence that 

labor market adjustments can explain why higher IT returns concentrate in select labor markets 

during the emergence of new IT innovations. Explaining firm-level variation in IT returns has 

been a topic of long-standing interest in the IT value literature (e.g., see Brynjolfsson and Hitt 

2000), and recent empirical work demonstrates that IT returns are unevenly distributed across 

geographic regions (Dewan and Kraemer 2000; Bloom, Sadun, and Van Reenen 2012).  By 

leveraging new data sources on the distribution of fine-grained technical skills among workers in 

different firms and labor markets, this paper provides evidence that the importance of labor 

market spillovers—a potentially important source of variation in IT returns across labor 

markets—vary according to the maturity of technical skills. In doing so, it connects an emerging 

literature on IT spillovers (Cheng and Nault 2007, 2011; Chang and Gurbaxani 2012; Tambe and 

Hitt, forthcoming) to a recent literature that documents geographic divisions in IT returns during 

periods of rapid IT innovation and argues that technological change in general—and the spread of 

big data technologies in particular—has the potential to foster “digital divides” and inequality 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  See Greenstein and Nagle (2012) for a detailed discussion of the difficulties associated with measuring open source 
software use and value.	  
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across regions (Freeland 2010; Dewan, Ganley, and Kraemer 2010; Forman, Goldfarb, and 

Greenstein 2012). Finally, by examining how labor networks change in importance over the 

lifecycle of IT innovations, the paper contributes to a literature on IT human resource 

management and firm performance (Agarwal and Ferratt 2001; Ang, Slaughter, and Ng 2002; 

Levina and Xin 2007; Bapna et al. 2013). Implications for managerial and policy decisions 

related to big data technology investment are discussed at the end of the paper. 

2.0 Technology Background 

The term “big data” is used to describe technologies enabling the collection, management, and 

analysis of datasets that are too large for conventional database systems (Dumbill 2012), and 

recent work discusses how big data tools are enabling new decision-making capabilities for firms 

(Provost and Fawcett 2013). To address the limitations of existing database systems, big data 

technologies use massively parallel computing approaches. Although distributed data processing 

has a long history (e.g., see Provost and Kolluri 1999 for a survey of the literature over a decade 

ago), the scale and rate of data collection in recent years has raised the returns to innovation in 

data processing technologies. The origins of the most recent wave of new data technologies can 

be traced to employees at Google who, in 2004, began using big data algorithms to support 

distributed processing. Apache Hadoop, the most widely used software platform for big data 

analytics, is derived from the Map/Reduce framework, implemented in the Java programming 

language, and freely distributed under an open source license. This open source project has a 

number of subprojects such as Cassandra, Pig, Hive, and HDFS, that handle different parts of the 

Hadoop cluster interface, communication, and processing flow. Big data infrastructure requires 

the implementation of this software and data environment on computer clusters. Because both the 

hardware and software required to support big data processing are readily available to firms, one 

of the primary expenses that firms face when implementing big data systems is the acquisition of 

expertise required to install, maintain, and facilitate these clusters to support data analysis. 

 Although there is debate about the potential economic impact of these technologies, some 

case-level evidence has begun to emerge from the business press about how the use of big data 

technologies generates value for specific firms in different industries. Big data technologies allow 

firms to extract business intelligence from petabyte-scale data in nearly real-time, a data 

processing task that requires managers using older data technologies to make compromises on 

either data size or processing time.  For instance, Sears used Hadoop clusters to lower marketing 

analysis time for loyalty club members from six weeks to weekly, and even daily for online and 

mobile scenarios, while improving the granularity of its targeting (Henschen 2012).  Orbitz 

Worldwide uses Hadoop to parse unstructured data on users’ trip planning activities to develop 
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portraits of user preferences that can be used for delivering personalized information (Schaal 

2011). Netflix uses a Hadoop based infrastructure to analyze customers’ viewing habits and 

deliver viewing recommendations (Harris 2012). Finally, Morgan Stanley has used Hadoop to 

determine, in real-time, how financial market events affect site activity by examining web logs, a 

process that in the past took months (Groenfeldt 2012). These examples illustrate how big data 

technologies enable firms to derive intelligence from Internet scale data in nearly real-time, 

improving the speed and the accuracy of managerial decision-making. 

3.0 Data and Key Measures 

3.1 Primary Data Source 

The primary data source used for this analysis is the LinkedIn database. LinkedIn is a 

professional networking website that had over 175 million users worldwide at the time of the 

analysis.5  Website participants report professional information on their profiles, including 

employment histories, education, geographic locations, accomplishments, and interest groups. 

LinkedIn also invites participants to list skills such as C++, Java, and Hadoop. 

Among emerging data technologies, Hadoop investments have been identified by 

industry observers as some of the most closely associated with the recent wave of investment in 

data technologies (e.g., see Dumbill 2012, Bertolucci 2012). This analysis focuses specifically on 

firms’ Hadoop investments, which are measured using the employment of technical workers who 

report having or using Hadoop skills. Similar measurement approaches, based on human capital 

investments, have been used in prior work on IT value, due to the large share of IT investment 

commanded by technical labor (Lichtenberg 1995; Brynjolfsson and Hitt 1996; Tambe and Hitt 

2012). Due to the open source nature of the infrastructure software for Hadoop and its reliance on 

commodity hardware, human capital investments are likely to comprise an especially large share 

of investment into big data technologies. Therefore, data on human capital investment is likely to 

be highly correlated with overall Hadoop investment, and in fact may be one of the few available 

markers that can distinguish investment in emerging data technologies from investment in older 

generations of data technologies. 

One caveat of developing and using a measure of Hadoop investment is that it will be 

correlated with the use of related data technologies within the firm6, so the coefficient estimates 

produced using this measure are likely to reflect the returns to Hadoop investments as well as 

related investments in emerging data technologies. For instance, Hadoop investments are 

associated with a variety of new technical skills and technologies as well as increased demand for 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 See http://www.linkedin.com. These data were collected and analyzed while the author was visiting LinkedIn.	  
6 This is likely to be true when using measures of any specific information technology.  
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existing technical skills such as machine learning. Figure 1 uses the LinkedIn skills database to 

compare the technical skill mix of firms with Hadoop investments with that of other firms. Firms 

with Hadoop investments have disproportionately more workers with data skills such as “apache 

pig” and “map/reduce”, in addition to skills such as “recommender systems” and “text 

classification” that have experienced increased demand from investments in new data 

technologies. The coefficient estimates produced by using Hadoop as a marker of firms’ data 

technology investments are likely to reflect these broader underlying differences in technology 

and human capital across firms, and therefore, must be interpreted accordingly. 

Because LinkedIn profiles include geographic data, Hadoop investment can also be 

measured at the firm-region levels. This observational unit is not as precise as the establishment 

level comparisons conducted in prior IT adoption research (e.g. Forman 2005), but provides some 

within-firm variation in how the labor pool impacts IT returns, and much of the economics 

literature treats the metropolitan region as the appropriate observational unit for labor market 

analysis (e.g., Card 1990; Borjas et al. 1996). Similar methods are used to create firm-region 

measures of other technical skills. Firm-level IT measures are created using the number of US-

based IT workers in the database who report working for an employer in a given year. This 

approach follows prior work that uses employment history databases (Tambe and Hitt 2012), and 

due to the large fraction of the US technical workforce represented in the LinkedIn database, 

requires few sampling corrections. The firm’s labor market is circumscribed using the firm-to-

firm flows of technical workers as reported on workers’ employment histories. This approach also 

directly follows prior work (Tambe and Hitt, forthcoming), and in addition to being a more 

precise measure of the labor market than geographic region, has the advantage that it allows 

comparisons between firms in the same regions that are embedded in different labor networks. 

3.2 Measurement Error 

The most important caveat to this measurement approach is uneven sampling across firms, skills, 

and regions, affecting which users choose to post which skills information into the database. 

Measurement error has been a common problem in most data sets used in firm-level IT research, 

and the error variance for even the most commonly-used IT measures has been estimated to be as 

high as 30-50% of the variance of the IT measure (Brynjolfsson and Hitt 2003). It is important, 

therefore, to understand the potential direction and magnitude of biases produced by these errors. 

Estimation bias arises when omitted variables affect firm output as well as a) the 

propensity for a firm’s IT workers participate on LinkedIn or b) the probability that a firm’s 

employees accurately report skills. In general, the large sample size mitigates concerns related to 

website participation. LinkedIn includes much of the white-collar workforce, and within the US-
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based IT workforce, the size of the LinkedIn sample appears to be over 80% of the size of the 

total US IT workforce as reported by the Bureau of Labor Statistics. Correlations with external 

data sources indicate that the IT employment measures created using LinkedIn data accurately 

measure the total size of the firm’s IT labor force. In logs, correlations between the IT 

employment measures generated using LinkedIn data and a) the IT employment measures 

developed using similar methods in recent work is 0.61 (Tambe and Hitt 2012),  b) with survey 

data analyzed by Brynjolfsson and colleagues is 0.70, and c) with total employment in the 

packaged software industry (SIC 7372), in which a very large fraction of employees are IT 

employees, is 0.81. 

The more important measurement concern relates to the likelihood that IT workers report 

their technical skills in a representative way.7 The likelihood of reporting a particular skill online 

is dependent upon employer, skill, and worker attributes. For instance, there is a potential bias in 

online platform participation towards younger workers who use emerging technologies. Older IT 

workers using mature information technologies may have less incentive and lower proclivity to 

post their technical skills on LinkedIn.  Moreover, workers at some firms may have more or less 

incentive to report their skills than workers at other firms. 

However, firm-level estimates produced using these measures are robust to several of 

these sources of error. Systematically higher reporting rates for Hadoop relative to other skills 

will not impact the estimates if they do not affect the distribution of Hadoop skills across 

employers. Consistently higher reporting rates for skills at more productive firms can be 

addressed by normalizing firm-level skill measures by the rate at which other skills are posted at 

the firm. Factors that raise the rate of posting only Hadoop skills for workers only at more 

productive firms are more difficult to address, because this is one of the key sources of variation 

generating the estimates, and there are no administrative data at the skill level that can be used for 

direct comparisons. However, Spearman rank correlations reject the hypothesis of systematic 

differences between the distributions of IT employment across labor markets and the distribution 

of IT employees across labor markets who report skills (ρ=0.998), as well as between the 

distribution of IT employment across firms and the distribution of IT employees across firms who 

report skills (ρ=0.983). These correlations are inconsistent with large differences in skill reporting 

rates across firms. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7There has been recent concern about the possibility of fake profiles on social networks (Thier 2012).  However, fake 
profiles will not bias the coefficient estimates unless big data skills are over- or under-represented in fake profiles, so 
they should not directly impact the estimates.  Moreover, falsely reporting skills on one’s profile will also not tend to 
exert an upward bias on the estimates unless individuals are more likely to falsely report these skills at high-performing 
firms. 	  
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However, because some measurement error bias is likely to affect the estimates, results 

are reported at the end of the analysis from sensitivity tests of the key estimates to measurement 

error. These are conducted by constructing alternative measures that differ in their sensitivity to 

error—for instance, results are reported from regressions using binary measures of firms’ Hadoop 

investments, which are less sensitive to how many workers within each firm report skills. 

Similarly, the use of four-digit industry controls removes the effects of systematic differences in 

reporting rates across four-digit industries, which limits the impact of measurement problems to 

differences in skill reporting among firms within a four-digit industry. Fixed-effects estimators 

based on within-firm changes can remove some of the impact of these sources of bias, as long as 

they are time-invariant in the short panel.  Although these tests do not remove the effects of 

measurement error from key estimates, they place bounds on the size of a bias term produced this 

type of measurement error. 

A final source of measurement error is that workers only report current skills. The timing 

of the data capture, therefore, during a period in which there is significant cross-sectional 

variation across labor markets in big data investment, is important. However, one caveat is that 

using these data to impute skill distributions at prior employers is noisy. It produces an upward 

bias on key estimates if more productive firms are more likely to attract the types of workers who 

will eventually learn Hadoop, although this is mitigated by the short duration of the panel used in 

the analysis and is addressed by some of the tests reported below that account for timing, labor 

expenses, and the lagged productivity of firms. 

3.3 Supplementary Data Sources 

The Compustat database was used to create measures of capital, non-IT employment, labor 

expenses, and value added (sales minus materials), and to construct dummy variables for industry 

and year. Different analyses described below use industry variables constructed at either the two-

digit and four-digit SIC levels. Value-added was chosen as a dependent variable to maintain 

consistency with prior IT productivity research and has the benefit that it is less subject than 

measures of total output to bias introduced by unobserved variables that affect demand and 

employment choices. Measures of capital and value-added were adjusted using methods common 

in the micro-productivity literature and were deflated to a base year using industry-level deflators 

posted at the Bureau of Economic Analysis. 

Supplementary measures were created using firms’ investments in SQL skills, as well as 

survey-based measures of firms’ investments in data-driven decision-making practices, measured 

through surveys administered in 2008 and used in prior research on the impact of data-driven 
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decision-making on firm performance (Brynjolfsson, Hitt, and Kim 2011).8  The data-driven 

decision-making measure used in this analysis is based on questions about the extent to which 

data are used by the firm to make decisions about new products or services.9  Rather than use 

these data at the firm level, which would significantly restrict the sample size, these data are used 

to construct industry level measures of data-driven decision-making, computed as the mean value 

of all firms in the four-digit industry for which survey responses are available. 

4.0 Methods 

4.1 Complementarities Theory 

This paper formalizes the notion that returns to firms’ Hadoop investments are increasing in the 

investments of other firms in the labor market by testing for (Edgeworth) complementarities 

between the investments of firms in the same labor pool. This definition of complementarities, 

formalized by Milgrom and Roberts (1990, 1994), has been the basis of an influential literature 

on organizational complementarities (Arora and Gambardella 1990; Huselid 1993; Milgrom and 

Roberts 1994; Ichniowski, Prennushi, and Shaw 1997; Athey and Stern 1998; Bresnahan, 

Brynjolfsson, and Hitt 2002; Bloom, Sadun, and Van Reenen 2012) as well as a literature on the 

relationship between firms’ own investments and external investments in other knowledge-

bearing assets such as R&D (Laursen and Foss 2003; Mohnen and Roller 2005; Cassiman and 

Vuegelers 2006). This definition of complementarities requires that the contribution of elements 

of an organizational choice vector to a payoff function (Π), such as productivity or innovation, is 

higher in the presence of the complementary elements.10 

(1)  Π(1,1) - Π(0,1) ≥ Π(1,0) - Π(0,0) 

This framework enables complementarities tests between choice variables for which the 

assumptions required for the application of differential techniques, such as the divisibility of 

inputs and non-convexity, are violated. Empirical studies in this literature commonly examine 

complementarities using the following two tests: 

a) Examining correlations in inputs (indirect tests)  

b) Testing how a “payoff” function is affected when complementary inputs are used in 

combination and independently (direct tests). 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  I am very grateful to the authors for providing access to this data. 
9	  This measure departs from the BHK measure of data-driven decision making because the other measures used in their 
construct reflect both firms’ use of data assets as well as successful use of data technologies.  The measure used in this 
analysis is based on a question that primarily focuses on practices because it used to test the benefits of modern data 
technologies, conditional on firms’ practices. 
10	  This definition of complements differs somewhat from the notion of complements used in factor demand theory 
(Amir 2005). The latter approach has been used by a number of studies in the IT value literature to estimate how firms’ 
IT usage affects other factors, such as labor and capital (notable studies in this stream include Brynjolfsson and Hitt 
1995 and Dewan and Min 1997). The two definitions of complements are equivalent under certain conditions described 
in Milgrom and Roberts (1990). Thanks are due to an anonymous reviewer for these points. 
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4.2 Complementarities Tests 

Indirect correlation tests are conducted by testing how firms’ own Hadoop investments are 

associated with firm, industry, and labor market factors. Tests for complementarities between 

inputs are implemented using short-run demand equations for different technical investments, 

conducted at the end of the sample period (similar to the approach used in Bresnahan et al. 2002). 

For evidence of complementarities, Hadoop investment should be conditionally correlated with 

the investment levels of other firms in the labor market, after controlling for other factors. 

Direct complementarities tests are implemented using productivity as an outcome 

variable. The impact of IT investments on productivity has been measured using a variety of 

functional forms including the Cobb-Douglas (Brynjolfsson and Hitt 1996) as well as more 

flexible forms such as the translog and CES-translog (Dewan and Min 1997).  However, direct 

complementarities tests using productivity as a dependent variable have most often been 

implemented using the Cobb-Douglas framework, due in part to its ease of augmentation 

(Brynjolfsson and Milgrom 2012 review this literature). In logs, this model has the following 

form, where Y is a measure of output such as value added and X are the firm’s inputs and i and t 

index firm and year: 

(2)  log Yit = C + ΣlogXit + controls + eit 

Brynjolfsson and Milgrom (2012) discuss how direct complementarities tests between inputs can 

be implemented using the Cobb-Douglas model with the complementary inputs entered 

independently and in pairs to test the inequality restrictions in equation (1). 

This paper uses the framework in (2) to implement direct complementarity tests between 

own and labor market Hadoop investment. Prior work in the IT productivity literature extends the 

Cobb-Douglas using investments in specific technologies, such as data practices or ERP adoption 

(Brynjolfsson, Hitt, and Kim 2011; Hitt, Wu, and Zhou 2002), and prior work in the micro-

productivity literature has augmented this model to include external IT and R&D investment as a 

factor of production. The most common method of measuring external investment in knowledge-

bearing inputs, based in an empirical literature on R&D spillovers (Griliches 1992 reviews this 

literature), uses data on other firms’ investments combined with weighting measures reflecting 

the strength of the knowledge transmission path between firms. This method has been adapted for 

an emerging literature on IT spillovers (Cheng and Nault 2007, 2011; Chang and Gurbaxani 

2012) and the method used in this paper follows prior work measuring labor market spillovers 

from IT investment (Tambe and Hitt, forthcoming). LinkedIn employment histories are used to 

directly model investments within the firm’s labor pool (S) as: 

(3)  STi= wijTjj  
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where wjij is the share of incoming IT labor that firm i acquires from firm j in each year and T is 

the relevant investment, measured as the number of technical workers with skills complementary 

to the relevant technology [e.g., overall employment of IT workers or employment of workers 

with Hadoop skills] of firm j, respectively, in that year. An alternative measure used in some 

regressions substitutes wjr, the share of IT labor hired from firm j in a particular metropolitan area 

r, for wj and substitutes Tjr, the investment levels for firm j in that metropolitan area, for Tj. 

Direct complementarities tests can then be implemented by augmenting the production 

function in (2) with own and labor market Hadoop investment or other technologies 

independently and in pairs to test the hypothesis that the relationship in (1) is satisfied after 

controlling for other factors affecting productivity levels. The complementarities hypothesis is 

supported by positive coefficients on the interaction terms.  Brynjolfsson and Milgrom discuss 

additional test statistics (2012). 

5.0 Descriptive Statistics 

5.1 Preliminary Evidence for Labor Market Complementarities 

Table 1 reports industries with the largest Hadoop investments, measured using the skills data. 

Most are IT industries, but over 30% of Hadoop investment is in non-IT industries, including 

finance, transportation, utilities, and retail.  Figure 2 illustrates the geographic distribution of this 

investment. Measures in Figure 2 are normalized by the IT labor force size in each region and 

represent the intensity of investment into Hadoop skills within the IT workforce, which is greatest 

in the San Francisco Bay area. As discussed above, these geographic imbalances in Hadoop skills 

reflect broader differences in underlying changes to the technical skills in these labor markets. 

Figure 3 compares the distribution of technical skills in the San Francisco Bay area, the most 

Hadoop intensive region, to the distribution of skills in the rest of the US IT labor force. The 

vertical axis is the fraction of each skill in the Bay area. The figure indicates a disproportionately 

high concentration of skills required to support large-scale data analytics, such as “Apache Pig,” 

“Hadoop,” “distributed algorithms,” “recommender systems,” and “HBase.” 

Figure 4 plots the age of some other major technical skills against their geographic 

concentration, where the ages of technical skills were collected using Internet data sources,11 and 

where the geographic concentration of skills is computed by summing the squared share of the 

skill in each metro area across all metro areas, such that a value of one corresponds to all 

employees with a particular technical skill being located in a single metropolitan region. Some of 

the most concentrated skills are associated with emerging data technologies, such as Hadoop and 

Map/Reduce, and the least concentrated are older technical skills such as Cobol and Fortran, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 For example, see http://en.wikipedia.org/wiki/History_of_programming_languages. 
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which is consistent with the hypothesized importance of labor market concentration for emerging 

technical skills. 

These comparisons suggest that the complementary human capital is concentrated for 

emerging IT innovations but diffuses as labor markets adjust.  Figures 5 and 6 provide evidence 

that this labor market variation is consistent with patterns of returns to firms’ Hadoop 

investments. For each firm in the sample, Figure 5 plots the Hadoop investment of firms in its 

labor market against changes to the firm’s value-added relative to its industry from 2005 to 2011, 

where firms are divided into adopters and non-adopters of Hadoop.  For firms that have made 

Hadoop investments, performance changes relative to the industry are increasing in levels of 

labor market Hadoop investment, but the performance of firms without Hadoop investments does 

not appear to be correlated with labor market investment levels.  

Figure 6 uses SQL instead of Hadoop as the focal investment variable. Unlike Hadoop 

investment, there is no apparent benefit to being embedded in SQL-intensive labor markets when 

investing in SQL-based technologies, which is consistent with the short-run nature of the 

complementarities hypothesized in this study. Labor market concentration appears to matter for 

emerging technologies for which it is important to acquire technical workers from other 

companies, but the skills required to support mature technology investments can be acquired 

through other channels.  Section 6 explores these relationships in a regression framework. 

5.2 Summary Statistics 

Table 2 reports means and standard deviations for the key measures used in the regression 

analysis along with statistical tests for the presence of significant differences in means between 

firms making Hadoop investments and other firms in the sample. Firms with Hadoop investments 

are characterized by higher employment (t=10.21) and greater IT-intensity (t=23.52), in part due 

to the higher fraction of these firms in IT industries. Measures of total IT employment and 

Hadoop-intensity within a firm’s labor market are also significantly larger for firms with Hadoop 

investments. Table 3 reports simple correlations using 2011 values for the key regression 

measures. 

6.0 Regression Analyses 

6.1 Indirect Complementarities Tests 

Table 4 implements correlation tests (indirect complementarity tests) on the key measures.  The 

estimates in column (1) indicate greater Hadoop investment in industries characterized by higher 

levels of data-driven decision-making, which is consistent with the higher potential benefits from 

investing in new data technologies in these industries (t=1.95). The direct effects of labor market 

Hadoop investment are also significant (t=2.09), but the coefficient estimate on labor market SQL 
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investment is not significant. By contrast, the coefficient estimates on the labor market 

investment measures are insignificant when SQL investment is used as the dependent variable in 

column (2), providing indirect evidence favoring strategic complementarities for firms’ Hadoop 

investments, but not for investment in more mature data technologies. Column (3) adds SQL 

investments on the right-hand side of the equation. Hadoop investment is negatively associated 

with firms’ SQL investment (t=2.79), perhaps indicating slower adoption when firms face higher 

replacement costs for existing technologies.  

Because workers often acquire skills through hands-on interaction with new technologies, 

these correlations should be strongest for measures that capture whether firms hire IT labor from 

the specific establishments of other firms in which Hadoop investments are being made.  Indeed, 

correlations with the broader firm-level measures of Hadoop investment disappear after including 

the more precise firm-region level measures of Hadoop investment in (4) (t=3.77). In general, all 

of the correlations reported in Table 4 are consistent with the hypothesis that being in the same 

labor networks as firms making similar investments is complementary to investment in emerging 

data technologies, but not for mature data technologies. 

6.2 Baseline Productivity Estimates 

Before presenting the results from the direct complementarities tests, baseline results are reported 

from embedding Hadoop investment measures into a productivity equation. As discussed earlier 

in the paper, the magnitude of the impact of the new data technologies on firm productivity 

remains a question of empirical interest. 

The OLS estimates in column (1) of Table 5 indicate an IT output elasticity that is 

comparable to studies that use similar specifications (t=15.5) (e.g., see Lichtenberg 1995). The 

larger coefficient estimate when using IT employment instead of IT capital stock as an IT 

investment measure can be attributed to the use of employment, rather than labor expense, as the 

labor input measure. In the absence of direct labor expenses, higher wages paid to more educated 

workers in IT-intensive firms12 are partially reflected in the IT coefficient rather than the labor 

coefficient. The estimated output elasticity on Hadoop investment is positive and significant 

(t=4.93), but interpretation of this estimate (as well as the estimates on Hadoop investment 

reported throughout this paper) is subject to the caveat described above—that it reflects not only 

firm-level differences in Hadoop investment, but also differences in related data technology and 

human capital investments.  F-tests reject the equality of the coefficient estimates on Hadoop and 

IT investment (F=10.68, p<0.001). Marginal products are difficult to compute because the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 Bresnahan, Brynjolfsson, and Hitt (2002) provide evidence that IT use is associated with greater demand for skilled 
workers. 
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Hadoop investment measures mark larger underlying investments in new data technologies—

however, the coefficient estimates on IT and Hadoop suggest a higher marginal product for 

Hadoop investment under reasonable assumptions about the share of investment commanded by 

Hadoop technologies relative to overall IT spending. 

Columns (2) and (3) add SQL investment measures and data-driven decision-making 

(DDD) variables into the regression to control for confounding effects on the Hadoop investment 

measure caused by returns to correlated data practices which provide value to the firm. The DDD 

variable is statistically significant and similar in magnitude to estimates from prior work using 

measures based on these survey data (Brynjolfsson, Hitt, and Kim 2011). The Hadoop estimate 

remains significant after including these data variables (t=5.07), and is of the same magnitude as 

in the baseline regressions, suggesting that the estimated output elasticity on the Hadoop measure 

is not substantially biased upwards by omitted variables related to the use of other data 

technologies and practices. 

However, the OLS estimate on the Hadoop measure indicates an output elasticity of 10%, 

which is a large value, some of which may be attributable to other omitted variable bias. Columns 

(4) through (6) add firm fixed-effects, which remove biases attributable to firm-level factors that 

are not time varying.  The magnitude of the coefficient estimates on Hadoop investment falls 

considerably when firm fixed-effects are added in (4), indicating significant unobserved 

heterogeneity between firms making Hadoop investments and other firms. The coefficient 

estimate on Hadoop investment produced by the fixed-effects estimator indicates an output 

elasticity of only 1% to 2%, and is statistically significant at only the 15% level. Part of the 

explanation for this reduced coefficient estimate, however, may be that firm-fixed effects also 

remove the effects of assets that impact the returns to Hadoop investment. Columns (5) and (6) 

include firm fixed-effects but are separated by whether firms are above or below the median 

value of the DDD variable. With firm fixed-effects, the coefficient estimate on Hadoop 

investment indicates an output elasticity of slightly over 3% for firms with data assets (t=2.22), 

but the estimate is insignificant for firms in other industries. These estimates indicate that 

heterogeneity in the complete panel masks significantly higher productivity levels in firms with 

Hadoop investments and substantial data assets. 

6.3 Direct Complementarity Tests 

Table 6 introduces labor market measures and implements direct complementarity tests using 

productivity regressions. Labor market measures of IT, Hadoop, and SQL investment are 

standardized with means removed, so the main effects of investment in each of these technologies 

can be interpreted as the contribution to value-added from these investments for firms in labor 
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pools with average investment levels.13 Column (1) includes measures of own Hadoop investment 

as well as a measure of aggregate labor pool IT investment. The estimate on labor pool IT 

investment is statistically significant and the magnitude of the estimate indicates that hiring 

technical workers from labor markets with IT investment levels that are one standard deviation 

above the mean is associated with an output elasticity of 2% (t=2.4), which is very close to 

estimates from prior work that use similar methods but different data sources to quantify the 

aggregate impact of IT labor market spillovers on productivity growth (Tambe and Hitt, 

forthcoming). After including labor pool measures of Hadoop investment in (2), the estimate on 

the IT investment pool is no longer statistically significant, which is consistent with the argument 

that the “spillover” effect from labor market investment is generated by investments in new 

information technologies. The magnitude of the output elasticity on the Hadoop pool measure is 

larger than the estimate on the IT pool in (1) (t=3.25). 

Column (3) adds interaction terms between labor pool investment and firms’ own 

investments. The interaction term for Hadoop investment is positive (t=1.75), and the coefficient 

estimate on firms’ own Hadoop investments is no longer significantly different than zero after 

including the interaction term, which is consistent with complementarities between internal and 

external Hadoop investment. The main effect on the labor market Hadoop investment measure is 

positive and statistically significant, perhaps due to factors allowing firms to acquire labor from 

other firms with Hadoop investments, but it becomes insignificant after including firm fixed-

effects in (4) and (5).  The interaction of own Hadoop investment and labor market Hadoop 

investment remains positive and significant after including firm fixed-effects. The estimates in 

columns (1) through (5) are consistent with the presence of complementarities between own and 

labor market investment in emerging data technologies, but not for general technological 

investments. For firms with Hadoop investments, OLS regressions indicate that being in a labor 

pool with investment levels that are one standard deviation higher than the mean is associated 

with an output elasticity of 8%, and panel estimates suggest an elasticity of 3% to 4%.  However, 

in a labor pool with average Hadoop investment levels, the coefficient estimates on firms’ own 

Hadoop investments are not significantly different than zero. 

Columns (6) and (7) report results from OLS regressions using data on the firm-region 

combinations in which workers are acquired. The labor pool measures constructed using these 

data are more precise than the earlier measure but only available for 2011, so only cross-sectional 

regressions are presented. After including these measures in (6), the region-based measures are 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13	  Labor market measures were computed as in equation (3) and then were logged before removing the mean and 
standardizing the variables. 
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significant but the estimate on the original Hadoop pool that does not account for region is no 

longer significant and in (7) the interaction term using the original Hadoop pool measure is no 

longer significantly different than zero after including the region-based interaction measure. 

These regression results imply that spillovers occur when hiring workers from the specific 

establishments of firms that are making Hadoop investments. These findings are more consistent 

with human capital explanations than labor network homophily if this type of homophily is more 

likely to arise along firm-level variables than along firm and region specific variables. For 

comparison with SQL investment, column (8) tests a specification similar to that in column (2) 

but using SQL measures. Unlike Hadoop investment, labor pool investment in SQL does not 

exhibit a statistically significant association with the firm’s value-added. 

Table 7a implements another form of direct complementarities tests proposed by 

Brynjolfsson and Milgrom (2012) that contrasts the productivity levels of firms with varying 

combinations of own and labor market investment. Each of the variables is dichotomized, where 

the firm’s Hadoop investment variable is coded such that 1 represents employing at least one 

worker with Hadoop skills, and all other firms are coded 0, and the labor pool investment variable 

is coded as 1 for firms in labor pools in the top quartile of investment. Complementarities imply 

that after controlling for other inputs, value-added for firms with Hadoop investments are higher 

when these firms are located in labor pools in the top quartile of Hadoop investment.  

The highest productivity group is where firms have higher levels of both factors (1, 1), 

where values are expressed as productivity levels relative to the omitted (0, 0) group. F-tests of 

productivity differences between the (1, 1) group and groups with any other combination of 

factors are just short of significant at the 10% level (F(1,1691) = 2.55; p = 0.111), but chi-squared 

tests reject the hypothesis that observations are randomly distributed across the four cells 

(X2(1)=129.2, p<0.01), which is consistent with complementarities between own and labor 

market investment. The results from these tests are consistent with definitions of 

complementarities based on increasing differences (Brynjolfsson and Milgrom 2012). Table 7b 

reports the results of tests using SQL rather than Hadoop as the focal data technology investment. 

Evidence for complementarities disappears (F(1,1691) = 0.05; p = 0.823), which is consistent 

with the argument that labor market spillovers lose importance for explaining differences in 

returns to investments in mature technologies.  Chi-squared tests reject the hypothesis that firms 

are independently distributed across the quadrants (X2(1)=7.32, p<0.01), but these effects are not 

as strong as they are for Hadoop investments. 

6.4 Endogeneity Tests 
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Like most estimates from large-scale empirical studies in the IT value literature, the estimates 

reported above are subject to endogeneity concerns, including omitted-variable bias and reverse 

causality. These concerns reflect well-known limitations with obtaining unbiased estimates of 

returns to IT investment in large-sample studies.  Recent papers use econometric approaches to 

eliminate sources of endogeneity (Aral, Brynjolfsson, and Wu 2006; Tambe and Hitt 2012), but 

biased IT productivity estimates, especially due to a scarcity of effective instruments for IT 

investment, remain a persistent problem. Fixed-effects specifications address some issues, but 

time-varying factors affecting output and information technology investment can still impose an 

upward bias on the estimates. 

The most significant concern is that unobserved firm-level factors, such as the quality of 

a firm’s management or an anticipated increase in the demand for a firm’s output, can exert an 

upward bias on the coefficient estimate on Hadoop investment.  Although such sources of bias are 

difficult to completely remove, this section of the paper argues for a causal interpretation of the 

estimates presented above based on three types of evidence: 1) the pattern of correlations 

observed in the complementarities tests, 2) the timing of the observed productivity effects, and 3) 

evidence from additional robustness tests. 

First, an explanation favoring reverse causality or simultaneity would be consistent with a 

pattern of estimates in which higher productivity firms systematically make Hadoop investments. 

However, the estimates in Table 6 indicate that firms’ Hadoop investments, in the absence of 

complementary investments by other firms in the labor market, exhibit no statistical associations 

with higher productivity levels, which is somewhat inconsistent with an explanation in which 

higher productivity firms make Hadoop investments unless this investment behavior only occurs 

in specific labor markets. Similarly, biases on the labor market investment measures may occur if 

these measures are correlated with firm-level factors lowering the costs of attracting employees 

from Hadoop intensive firms (e.g. employment reputation), but this bias term should appear on 

the main effect of the labor pool measure rather than the complementarity term. In general, the 

emphasis on complementarities tests minimizes the importance of sources of bias that could be 

expected to impact the main-effect estimates on firms’ own investment or labor market 

investment, rather than acting at their confluence. 

Along similar lines, in Table 6, labor market position is not correlated with productivity 

unless firms hire from the specific establishments in which other firms are making Hadoop 

investments. Correlations between Hadoop investment and productivity levels disappear for firms 

that hire technical workers from the establishments of firms that have not made Hadoop 

investments, even if these establishments’ parent firms have made Hadoop investments.  This 
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reduces the likelihood of estimation bias on the labor market measures that is not associated with 

hiring within specific regions. 

Second, the timing of the observed productivity changes favors a causal relationship 

between Hadoop investment and firm performance. Figure 7 indicates that labor productivity 

levels (value added per employee) at firms making Hadoop investments diverge from that of 

other firms after 2009.14 Firms making these investments were more productive on average 

(consistent with the drop in the magnitude of the coefficient estimate after including firm fixed-

effects in Table 5), but the more recent divergence in performance between firms is less easily 

explained by the argument that more productive firms tend to invest in superior data capabilities. 

Interestingly, in the absence of Hadoop investments, there is no apparent difference in labor 

productivity levels for firms in Hadoop intensive labor markets and other markets, indicating that 

the recent productivity lift experienced by firms in these markets is principally due to 

complementarities with investment in these emerging technologies. This suggests that the IT-

enabled labor market wage divergence documented in prior work (Forman, Goldfarb, and 

Greenstein 2012) may reflect the performance of users of emerging technologies in these markets, 

rather than being shared by all labor market participants. 

Third, estimates from additional robustness tests are presented in Table 8 that attempt to 

minimize bias due to residual sources of firm-level heterogeneity, including time-varying firm-

level heterogeneity.  Columns (1) and (2) separate the sample into firms that are above and below 

median labor productivity levels in 2006 in order to remove some firm-level heterogeneity. The 

coefficient estimate on the Hadoop measure is statistically significant in both samples, which 

implies that the estimates are robust to restricting the sample to low-performing firms. Including 

lagged productivity measures in (3) provides a control for unobserved and time-varying 

differences in past-productivity levels. Including this measure reduces the estimate on Hadoop 

investment to half its prior magnitude, but it remains significant. It is not significant after 

including fixed-effects and lagged productivity levels in (4), but the point estimate is close to its 

value in prior fixed-effects tests. Finally, columns (5) and (6) report results from sub-samples of 

firms that are growing and shrinking their headcounts.  Firms with shrinking headcounts are less 

likely to be making investments in new technical capabilities in the absence of productivity 

improvements. The estimate on Hadoop investment, however, remains significant and similar in 

magnitude in both samples of firms. 

Another concern, due to the use of employment instead of labor expense as a workforce 

measure, is that Hadoop investment reflects unmeasured heterogeneity in workforce quality 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 I thank an anonymous editor for suggesting this test. 
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across firms. Columns (7) and (8) include labor expenses rather than employment to measure 

human capital differences, which substantially reduces the sample size due to the limited 

availability of labor expense data in the Compustat database. OLS regressions in (7) using labor 

expenses produce similar results to using employment, but including fixed-effects on the reduced 

sample in (8) eliminates the statistical significance of all coefficients except labor. 

6.5 Measurement Error Tests 

As described earlier in the paper, another class of concerns with the estimates presented above is 

that unobserved differences in the propensity of firms’ employees to report Hadoop skills on a 

platform such as LinkedIn may be correlated with firm-level performance measures.  It is difficult 

to remove the effects of biases produced by this form of measurement error, but robustness tests 

can bound the impact of this source of bias. To test the sensitivity of the key estimates to error in 

the skills measures, measures of Hadoop investment with different error characteristics are used 

in the baseline regressions.  

Column (1) of Table 9 uses a binary adoption variable that takes the value one when at 

least one of a firm’s employees reports Hadoop as a technical skill.  Converting Hadoop 

investment into a binary measure mitigates the degree to which factors causing employees at 

productive firms to report skills at significantly higher rates could bias the key estimates, because 

the estimates from the binary measure are generated only from variation between productivity at 

firms with some Hadoop investment and those with none. The use of this measure has relatively 

little impact on the estimated returns to Hadoop investment. The use of the binary measure along 

with a fixed-effects estimator in column (2) produces an output elasticity of about 3%, which is 

similar in magnitude to the key estimates presented earlier in the paper, although the estimate is 

insignificant. 

Column (3) uses a measure of Hadoop investment that is normalized by the number of 

employees at the firm reporting SQL skills, which removes the effects of factors that increase 

overall skill reporting rates for personnel at specific firms, unless these factors increase the rate of 

reporting Hadoop but not other skills. The estimate produced by the normalized measure is 

consistent with estimates generated earlier in the paper (t=2.93). Column (4) is a similar exercise 

that Java skills in the denominator, rather than SQL skills, which may be a better comparison if 

the distribution of Hadoop skills shares more in common with software development than with 

data management, but the results are again similar.  Finally, column (5) presents regression 

results when limiting the sample to firms making investments in Hadoop skills, so that variation 

in the sample is produced from differences in quantities of workers with Hadoop skills in firms 

who have at least one employee listing these skills. Estimates from this regression indicate that 
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correlations between Hadoop investment and productivity observed in earlier regressions reflect 

not only productivity differences between Hadoop-using firms and other firms, but also 

differences in productivity between firms with different intensities of Hadoop investment 

(t=3.98).  These tests rule out most measurement factors except for those that cause employees at 

more productive firms to report Hadoop but not other skills.  However, some of the tests 

described above, such as the binary measure in (1) and the timing results reported in Figure 7, 

minimize the likelihood that this type of measurement issue is driving the estimates.  

7.0 Summary and Conclusions 

Hadoop investment appears to be associated with higher productivity levels in data-intensive 

industries. However, the analysis underscores the tradeoffs described earlier in the context of 

Sears: managers of data-intensive firms must balance the benefits of extracting greater value from 

their data using big data technologies against the higher costs of acquiring the required expertise 

in a tight labor market. Outside of labor markets characterized by high levels of Hadoop 

investment, the estimated returns to firms’ own Hadoop investments were not statistically 

significant. For managers who choose not to incur the expense required to attract the necessary 

expertise in a tight labor market, investments in traditional database systems—for which the skills 

are widely available—may remain more effective. Alternatively, managers can wait.  Big data 

technologies are maturing and the channels through which to acquire the complementary skills, 

such as university programs, are expanding to new markets (Thibodeau 2012). Managers, 

therefore, should weigh the competitive benefits offered by big data technologies against the costs 

of acquiring the skills, both of which should fall over time. 

 For high-tech labor policy, these findings underscore the importance of skill acquisition 

channels for understanding why IT-enabled growth differs across labor markets during large 

waves of new IT investment. The findings suggest that access to complementary skills is 

associated with performance advantages for early adopters of big data technologies, but that the 

diffusion of complementary know-how erodes the productivity advantages experienced by firms 

located in these labor markets. Therefore, the channels through which these skills diffuse merit 

greater attention because the rate of this process has implications for the duration of the growth 

differences that result from the spread of big data technologies. Policies accelerating the diffusion 

of big data know-how to other labor markets, such as those that accelerate the establishment of 

courses in business analytics by institutions providing education or training, can narrow 

inequality in the stock of complementary skills across labor markets, but if there are significant 

lags in this process, firms in big data intensive labor markets will continue to experience faster 

productivity growth than other firms. 
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There are many related areas for future research related to the diffusion of big data 

technologies.  A question of policy interest, as the use of big data technologies becomes 

widespread, is the extent to which large-scale data driven decision-making will complement or 

substitute other types of human capital in the labor market (such as statistical proficiency).  

Furthermore, acquiring complementary skills is not the only obstacle to successful big data use. 

Effective big data use may require changes to existing data assets, management practices, and 

data governance. Prior work provides insight into how management practices provide superior 

performance by enabling firms to analyze interactions with customers, competitors, and suppliers 

(Mendelson 2000; Tambe et al 2012); the use of big data technologies can raise the returns to 

these practices by improving the depth of insight that firms derive from these interactions as well 

as the speed at which they respond. Installing these capabilities often requires organization-wide 

changes to complement data-driven practices. 
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Figure 1: Comparison of Skill Distributions in Firms with Hadoop Investment and Other Firms 

 

 

	  
 

 

 

 

 

 

 

 

 

Table 1: Top Ten Industries by Hadoop Investment* 

6-Digit NAICS Industry % of Hadoop Engineers 
Employed in Industry 

Software Publishers 20.4 
Internet Publishing and Broadcasting 13.0 
Computer Systems Design 5.2 
Radio and Television Broadcasting 5.0 
Internet Shopping 4.4 
Computer Peripheral Manufacturing 4.3 
Computer Services 3.9 
Commercial Banking 3.1 
Computer Storage Manufacturing 2.5 
Wired Telecommunication 2.2 
All other sectors 36.0 
Total 100.0 
*Industries based on 6 digit NAICS codes. Table only includes 6-digit NAICS industries with at 
least ten firms and is based on publicly traded firms only. 

 

 

Figure notes: Y-axis is the fraction of workers with each skills employed at firms with large Hadoop 
investments.  SQL and ERP in the middle of the graph are in proportion to the fraction of IT employment 
at these firms.  Technical skills to the right are disproportionately higher values for these firms. 
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Figure 2: Top Metropolitan Regions by Hadoop Investment 

 
 

Figure 3: Skill Distribution in San Francisco Bay Area Compared with Other Skills 

	   

 

Figure notes: The size of each circle represents the number of technical workers with Hadoop skills 
in each region normalized by total IT labor force size for each region. 

Figure notes: The y-axis is the fraction of workers with each skills employed in the San Francisco Bay 
Metropolitan Area. SQL and ERP are close to in proportion to total IT employment in the region.  Skills to 
the right are disproportionately found in this metropolitan region. 
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Figure 4: Technical Skill Age and Geographic Concentration 

 

Figure 5: Sales Growth Plotted Against Labor Market Hadoop Investment 
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Figure notes: The y-axis is change in sales share relative to other firms in industry.  Red triangles 
are firms with Hadoop investment.  Blue circles are all other firms. 
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Figure 6: Sales Growth Plotted Against Labor Market SQL Investment 

	  

	  
 

Table 2: Summary Statistics and Mean Comparisons for Key Regression Variables 

 (1) (2) (3) (4) (5) 
 

Mean Std. Dev. Hadoop 
Using Firms 

All Other 

Firms 
t-test 

Log(Value added) 6.89 1.04 7.54 6.12   11.52** 
Log(Capital) 5.51 2.39 6.65 5.72 5.61** 
Log(Non-IT employment) 8.28 1.91 9.46 8.31 8.83** 
Log(Labor expenses)a  6.66 1.85 7.86 6.68 4.15** 
Log(IT employment) 4.06 1.63 5.63 3.31   22.53** 
Log(Hadoop) .132 .463 1.27 0   63.01** 
Log(IT pool) 0 1 .248 -.719   10.05** 
Log(Hadoop pool) 0 1 2.49 .605   12.16** 
Log(SQL)+ 1.45 2.60 4.08 1.09   17.34** 
N 12,677  211 1,484  
Economic figures are from 2011 Compustat data. Value-added, labor expenses, and capital are reported in 
millions of dollars and are deflated to 2006 values.  Non-IT employment, IT employment, Hadoop, and SQL are 
reported in number of employees. **p<.05. A significant value in column (5) rejects the hypothesis that the means 
in (3) and (4) are equal. +2011 values only.  Means and standard deviations in Columns (1) and (2) are reported 
for all observations in panel.  Mean comparison statistics in Columns (3) through (5) are only for 2011 values.  
aLabor expense means and standard deviations are reported for 1,693 available observations for full sample and 
for 200 available observations for 2011 values.  IT pool is the IT employment of other firms weighted by 
incoming IT labor share and Hadoop pool is the Hadoop employment of other firms weighted by incoming IT 
labor share (see equation (3)).  Both pools are standardized with means removed. 
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Figure notes: The y-axis is change in sales share relative to other firms in industry.  Red triangles 
are firms with SQL database investment.  Blue circles are all other firms. 
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Table 3: Correlations for Key Regression Variables 

 1 2 3 4 5 
1. Log(Capital) 1.00     
2. Log(Non-IT employment) 0.76 1.00    
3. Log(Hadoop employment) 0.16 0.22 1.00   
4. Log(IT employment) 0.42 0.59 0.48 1.00  
5. Log(IT pool) 0.11 0.20 0.21 0.44 1.00 
6. Log(Hadoop pool) 0.11 0.22 0.26 0.49 0.84 
Simple correlations are shown for 2011 values of each variable. N=1,692. 

 
 

Table 4: Demand for Skills as a Function of Firm, Industry, and Labor Market Variables 

  (1) (2) (3) (4) 

 
Log(Hadoop) Log(SQL) Log(Hadoop) Log(Hadoop) 

VARIABLES OLS OLS OLS OLS 
DDD [Industry]   0.034* -0.097 0.033*  0.034* 

 
  (0.018)  (0.063) (0.017) (0.017) 

Log(IT employment)     0.114***     1.094***   0.131***   0.126*** 

 
 (0.016)   (0.065) (0.018) (0.018) 

Log(Non IT employment)   -0.047** -0.017 -0.047**  -0.041** 

 
      (0.018)   (0.066) (0.018) (0.018) 

Log(Capital)        0.011 -0.053 0.010 0.012 

 
  (0.014)   (0.059) (0.014) (0.014) 

Log(Value added)     0.069***      0.200***     0.072***    0.066*** 

 
 (0.021)   (0.075) (0.021) (0.021) 

Log(IT pool)  -0.002 -0.457 -0.010 -0.008 

 
  (0.034)   (0.279) (0.034) (0.034) 

Log(Hadoop pool)    0.040**  0.169    0.043** 0.005 

 
 (0.019)   (0.153) (0.019) (0.021) 

Log(SQL pool) -0.022  0.168 -0.020 -0.019 

 
 (0.019)   (0.154)  (0.019) (0.019) 

Log(SQL) 
  

    -0.016***   -0.017*** 

   
 (0.006) (0.006) 

Log(Hadoop pool-region)      0.054*** 
    (0.014) 
Controls Industry Industry Industry Industry 
Observations 902 902 902 902 
R-squared 0.309 0.675 0.312 0.319 
All regressions are short-run demand equations, estimating how firm’s investments in Hadoop and SQL 
skills are associated with other factor inputs, industry variables, and labor pool variables. OLS estimates 
are reported using 2011 values. Robust standard errors are shown in parentheses; *** p<0.01, ** p<0.05, 
* p<0.1.  Industry controls are included at the two-digit SIC level. 
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Table 5: Baseline Productivity Equations 
  (1) (2) (3) (4) (5) (6) 

VARIABLES All With SQL 
measures 

With SQL  
and DDD 
measures 

All 
DDD  
above 

median 

DDD below 
median 

 OLS OLS OLS FE FE FE 
Log(Capital)    0.304***    0.315***    0.314***    0.117***   0.145***    0.173*** 

 
(0.016) (0.015) (0.019) (0.010) (0.018) (0.022) 

Log(Non IT emp)   0.477***    0.430***    0.433***    0.646***   0.551***    0.618*** 

 
(0.021) (0.020) (0.024) (0.015) (0.024) (0.032) 

Log(IT emp)   0.155***    0.194***    0.201***    0.081***   0.087***  0.045* 

 
(0.012) (0.012) (0.015) (0.011) (0.018) (0.024) 

Log(Hadoop)   0.095***    0.132***    0.144*** 0.013  0.031** -0.019 

 
(0.019) (0.027) (0.028) (0.009) (0.014) (0.028) 

Log(SQL)  0.009* 0.010*    
  (0.005) (0.006)    
DDD [Industry]    0.038**    
   (0.018)    

Controls Industry 
Year 

Industry 
Year 

Industry 
Year Year Year Year 

Observations 12,677 12,677 7,594 12,677 3,699 3,895 
R-squared 0.891 0.863 0.863 0.358 0.464 0.260 
All regressions are from Cobb-Douglas production functions using logged value added as the dependent variable. Standard errors 
are clustered on firms and shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  DDD is the data-driven decision-making 
variable that uses the survey instrument described in Brynjolfsson, Hitt, and Kim (2011).  Log(Hadoop) is the log of the number 
of employees reporting Hadoop skills. Industry controls are included at the two digit SIC level. 

Column (1) is an OLS productivity regression using the Hadoop investment measure. 
Column (2) adds a measure of SQL investment to the regression in (1). 
Column (3) adds the industry level DDD variable to the regression in (2). 
Column (4) adds firm fixed-effects to the regression in (1). 
Column (5) is the fixed-effects regression in (4) restricted to the subsample of firms with the DDD variable above the mean. 
Column (6) is the fixed-effects regression in (4) restricted to the subsample of firms with the DDD variable below the mean. 
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Table 6: Direct Complementarity Tests 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Sample Period All years All years All years All years All years 2011 2011 2011 
VARIABLES OLS OLS OLS FE FE OLS OLS OLS 
Log(Capital)   0.308***    0.308*** 0.307***    0.195***    0.117***    0.382***   0.381***   0.405*** 

 
(0.016) (0.016) (0.016) (0.016) (0.010) (0.021) (0.021) (0.032) 

Log(Non IT emp)   0.478***   0.478*** 0.478***    0.573***     0.645***    0.371***   0.368***   0.327*** 

 
(0.021) (0.021) (0.021) (0.020) (0.015) (0.025) (0.025) (0.034) 

Log(IT emp)   0.164***    0.163*** 0.163***   0.124***     0.081***    0.167***   0.179***   0.138*** 

 
(0.011) (0.011) (0.011) (0.011) (0.011) (0.018) (0.020) (0.032) 

Log(Hadoop)   0.115***   0.110*** 0.000   0.024***     -0.030    0.113*** 0.127   0.177*** 

 
(0.023) (0.023) (0.063) (0.010) (0.028) (0.036) (0.114) (0.044) 

Log(IT pool)  0.021*** 0.005 -0.027 0.002  -0.026** -0.027 -0.072 -0.093 

 
(0.008) (0.010) (0.023) (0.006) (0.011) (0.036) (0.048) (0.061) 

Log(Hadoop pool) 
 

   0.033*** 0.032*** 0.012* 0.009 0.046 0.043  0.042** 

  
(0.012) (0.012) (0.007) (0.006)  (0.040)  (0.041) (0.020) 

Hadoop x Had pool 
  

0.085*   0.037*  -0.219  

   
(0.049)  (0.022)  (0.155)  

IT x IT pool 
  

0.010*    0.007**  0.022  

   
(0.006)  (0.003)  (0.015)  

Hadoop region         0.087***   0.073***  
      (0.021) (0.022)  
Hadoop x region        0.152**  
       (0.074)  
Log(SQL)           0.039*** 
        (0.013) 
Log(SQL pool)        0.055 
        (0.050) 

Controls Industry 
Year 

Industry 
Year 

Industry 
Year Year Year Industry Industry Industry 

Observations 12,677 12,677 12,677 12,677 12,677 1,692 1,692 902 
R-squared 0.891 0.891 0.891 0.352 0.359 0.870 0.870 0.864 
All regressions are from Cobb-Douglas production functions using log(value added) as the dependent variable. *** p<0.01, ** p<0.05, * p<0.1.  
Standard errors are clustered on firm.  All pool variables are constructed as the skill-based investments of all other firms weighted by the share of 
IT labor coming from those firms.  Columns (6)-(8) only include 2011 observations only. 
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Table 7a: Productivity Matched and Mismatched on Complements (Hadoop) 

Hadoop 
\ 

Labor pool 

 
1 

 
0 

 
1 

  0.296** 
(0.065) 
N=118 

0.056 
(0.045) 
N=298 

 
0 

0.081 
(0.077) 
N=92 

0 
(N/A) 

N=1,184 
Huber-White robust standard errors are shown in parentheses and clustered on firm.	  
Pearson Chi-Sq(1)=129.2, p<0.01. Year 2011 observations only.  The Hadoop variable 
takes the value 1 for firms with Hadoop investments and 0 otherwise. The labor pool 
variable takes the value 1 if firms are in labor markets in the top quartile of Hadoop 
investment and 0 otherwise.  The coefficient estimate in each quadrant indicates 
differences in mean logged value added for firms in each quadrant relative to firms in the 
omitted group (0,0), after controlling for levels of other inputs.  

 
 Test Statistic: F(1,1) + F(0,0) - F(0,1) - F(1,0)      
 F(1,  1691) = 2.55; p = 0.111 
	  
	  
	  

Table 7b: Productivity Matched and Mismatched on Complements (SQL) 

SQL 
\ 

Labor pool 

 
1 

 
0 

 
1 

0.105 
(0.080) 
N=392 

0.071 
(0.118) 
N=31 

 
0 

0.061 
(0.073) 

N=1,116 

0 
(N/A) 
N=153 

Huber-White robust standard errors are shown in parentheses and clustered on firm.	  
Pearson Chi-Sq(1)=7.32, p<0.01. Year 2011 observations only. SQL takes the value 1 
for firms with SQL investments. The labor pool variable takes the value 1 if firms are in 
labor markets in the top quartile of SQL investment and 0 otherwise. 

 
 Test Statistic: F(1,1) + F(0,0) - F(0,1) - F(1,0)  
 F(1,  1691) = 0.05; p = 0.823 
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Figure 7: Labor Productivity Separated by Hadoop/Labor Pool quadrants (see Table 7a) 

 

 

Table 8: Additional Robustness Tests 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

 

High  
Prod 

Low  
Prod 

Lagged 
VA 

Lagged 
VA 

Growing 
Firms 

Shrinking 
Firms 

Labor 
Expenses 

Labor 
Expenses 

VARIABLES  OLS OLS OLS FE OLS OLS  OLS FE 
Log(Capital)   0.115***     0.327***    0.074***    0.040***    0.309***    0.337***    0.191***   -0.011 

    (0.013) (0.014) (0.009) (0.012) (0.026) (0.021) (0.050) (0.033) 
Log(Non IT emp)   0.797***     0.410***     0.101***    0.518***    0.456***     0.394***   

    (0.018) (0.019) (0.011) (0.018) (0.033) (0.027)   
Log(IT emp)   0.095***     0.121***     0.020*** 0.018   0.190***     0.202***   0.120**   -0.070* 

    (0.014) (0.012) (0.007) (0.014) (0.023) (0.018) (0.049)   (0.040) 
Log(Hadoop)   0.083***     0.113***     0.046*** 0.016   0.137***     0.133***    0.139***   -0.022 

    (0.025) (0.039) (0.009) (0.011) (0.042) (0.031) (0.048)   (0.031) 
Log(Labor) 

   
 

  
   0.697***   0.777*** 

    
 

  
(0.099)   (0.050) 

Log(VA) – Lag 1 
  

    0.778***     0.235*** 
  

  

   
(0.021) (0.011) 

  
  

Observations 5,013 7,664 8,968 8,968 2,648 4,424 1,693 1,693 
R-squared 0.908 0.823 0.965 0.349 0.918 0.905 0.904 0.240 
Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  Standard errors are clustered on firm.  All regressions are Cobb 
Douglas using logged value added as the dependent variable. Dollar figures are deflated to 2006 values. 

Columns (1) and (2) are OLS regressions separated into subsamples with labor productivity above and below the mean. 
Columns (3) and (4) are OLS and FE estimates with lagged value added directly included into the productivity regression. 

   Columns (5) and (6) are OLS regressions separated into subsamples of firms that are growing and shrinking employment. 
Columns (7) and (8) are OLS and FE estimates using labor expenses instead of total employment. 
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Figure notes: The y-axis is the log of value added divided by total employment.  For each of the 
high/high, low/high, high/low, and low/log groups, the first value corresponds to own Hadoop 
investment levels and the second value corresponds to labor market Hadoop investment levels. 
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Table 9: Robustness Tests for Measurement Error in the Skills Variables 
  (1) (2) (3) (4) (5) 

 

Binary 
Hadoop 
Measure 

Binary 
Hadoop 
Measure 

Hadoop 
Compared 
with SQL 

Hadoop 
Compared 
with Java 

Firms with 
Hadoop 

Investment 
VARIABLES OLS FE OLS OLS OLS 
Log(Capital)     0.308***     0.118***    0.384***    0.305***    0.346*** 

 
 (0.016)  (0.010) (0.025) (0.017) (0.043) 

Log(Non-IT employment)    0.479***     0.646***   0.410***     0.484***     0.351*** 

 
 (0.021)  (0.015) (0.030) (0.022) (0.055) 

Log(IT employment)    0.171***     0.081***    0.157***     0.179***     0.221*** 

 
    (0.011)  (0.011) (0.019) (0.012) (0.050) 

Hadoop y/n    0.183*** 0.030 
   

 
    (0.054) (0.020) 

   Log(Hadoop / SQL) 
  

   0.044*** 
  

   
(0.015) 

  Log(Hadoop / Java) 
   

 0.030** 
 

    
(0.012) 

 Log(Hadoop) 
    

    0.167*** 

     
(0.042) 

Observations 12,677 12,677 1,690 1,690 1,335 
R-squared 0.891 0.358 0.906 0.890 0.929 
The dependent variable in all regressions is logged value added. Robust standard errors are reported in 
parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

Column (1) reports OLS results when using a binary measure of investment in Hadoop skills. 
Column (2) reports fixed effects results when using a binary measure of investment in Hadoop skills.   
Column (3) normalizes investment in Hadoop skills by investment in SQL skills.  
Column (4) normalizes investment in Hadoop skills by investment in Java skills.  
Column (5) limits the sample to firms that have invested in Hadoop skills. 

 


