
Adaptive Mining Techniques for Data Streams using
Algorithm Output Granularity

Mohamed Medhat Gaber1, Shonali Krishnaswamy1, Arkady Zaslavsky1

1 School of Computer Science and Software Engineering, Monash University,
900 Dandenong Rd, Caulfield East, VIC3145, Australia

{Mohamed.Medhat.Gaber, Shonali.Krishnaswamy,
Arkady.Zaslavsky}@infotech.monash.edu.au

Abstract. Mining data streams is an emerging area of research given the potentially
large number of business and scientific applications. A significant challenge in ana-
lyzing/mining data streams is the high data rate of the stream. In this paper, we pro-
pose a novel approach to cope with the high data rate of incoming data streams. We
termed our approach “algorithm output granularity”. It is a resource-aware approach
that is adaptable to available memory, time constraints, and data stream rate. The ap-
proach is generic and applicable to clustering, classification and counting frequent
items mining techniques. We have developed a data stream clustering algorithm
based on the algorithm output granularity approach. We present this algorithm and
discuss its implementation and empirical evaluation. The experiments show accept-
able accuracy accompanied with run-time efficiency. They show that the proposed al-
gorithm outperforms the K-means in terms of running time while preserving the accu-
racy that our algorithm can achieve.

1 Introduction

A data stream is a sequence of unbounded, real time data items with a very high data
rate that can only read once by an application [2], [16], [17], [24], [25]. Data stream
analysis has recently attracted attention in the research community. Algorithms for
mining data streams and ongoing projects in business and scientific applications have
been developed and discussed in [2], [13], [19]. Most of these algorithms focus on
developing approximate one-pass techniques.

Two recent advancements motivate the need for data stream processing systems
[16],[24] :

• The automatic generation of a highly detailed, high data rate sequence of data
items in different scientific and business applications. For example: satellite,
radar, and astronomical data streams for scientific applications, and stock
market and transaction web log data streams for business applications.

• The need for complex analyses of these high-speed data streams such as clus-
tering and outlier detection, classification, frequent itemsets and counting fre-
quent items.

There are recent projects that stimulate the need for developing techniques that
analyze high speed data streams in real time. These include:

• JPL/NASA are developing a project called Diamond Eye [5]. They aim to
enable remote systems as well as scientists to analyze spatial objects in real
time image stream. The project focuses on enabling “a new era of exploration
using highly autonomous spacecraft, rovers, and sensors” [5].

• Kargupta et al. [19], [21] have developed MobiMine. It is a client/server
PDA-based distributed data mining application for financial data streams.

• Kargupta et al. [20] have developed The Vehicle Data Stream Mining Sys-
tem (VEDAS) which is a ubiquitous data mining system that allows continu-
ous monitoring and pattern extraction from data streams generated on-board
a moving vehicle.

• Tanner et al. [30] are developing EnVironment for On-Board Processing
(EVE). This system analyzes data streams continuously generated from
measurements of different satellite on-board sensors using data mining, fea-
ture extraction, event detection and prediction techniques. Only interesting
patterns are sent to the ground processing centre saving the limited band-
width.

• Srivastava and Stroeve [29] are developing a NASA project for onboard de-
tection of geophysical processes such as snow, ice and clouds using kernel
clustering methods for data compression conserving the limited bandwidth
needed to send streaming images to the ground centers.

These projects and others demonstrate the need for data stream analysis tech-
niques and strategies that can cope with the high data rate and deliver the analysis
results in real time in resource constrained environments.

There are two strategies for addressing the problem of the high speed nature of
data streams. Input and output rate adaptation of the mining algorithm is the first strat-
egy. The rate adaptation means controlling the input and output rate of the mining
algorithm according to the available resources. The algorithm approximation by de-
veloping new light-weight techniques that have only one look at each data item is the
second strategy. The main focus of mining data stream techniques proposed so far is
the design of approximate mining algorithms that have only one-pass or less over the
data stream. In this paper, we propose a novel approach that is able to mine data
streams in one pass. Moreover, it is adaptable to memory, time constraints and data
stream rate. We termed our approach as algorithm output granularity (AOG). This
approach has the advantage of simplicity, generality and is an enhancement of the
approximate algorithms research by being resource-aware. That means that the algo-
rithm can adapt the output rate according to available resources.

The paper is organized as follows. Section 2 is a discussion on issues related to
mining data streams and proposes our algorithm output granularity approach. One-
pass mining techniques using our approach are proposed in section 3. The empirical
studies for clustering data streams using algorithm output granularity are shown and
discussed in section 4. Section 5 presents related work in mining data streams algo-
rithms. Finally, we conclude the paper and present our future work in section 6.

2 Issues in Mining Data Streams

In this section, we present issues and challenges that arise in mining data streams and
solutions that address these challenges. Fig. 1 shows the general processing model of
mining data streams.

Fig. 1. Mining Data Stream Process

Issues and challenges with mining data streams:

1) Unbounded memory requirements due to the continuous feature of the in-
coming data elements.

2) Mining algorithms require several passes over data streams and this is not
applicable because of the high data rate feature of the data stream.

3) Data streams generated from sensors and other wireless data sources create a
real challenge to transfer these huge amounts of data elements to a central
server to be analyzed.

There are several strategies that address these challenges. These include:
1) Input data rate adaptation: this approach uses sampling, filtering, aggrega-

tion, and load shedding on the incoming data elements. Sampling is the proc-
ess of statistically selecting the elements of the incoming stream that would
be analyzed. Filtering is the semantics sampling in which the data element is
checked for its importance for example to be analyzed or not. Aggregation is
the representation of number of elements in one aggregated elements using
some statistical measure such as the average. While load shedding, which has
been proposed in the context of querying data streams [3], [31], [32], [33]
rather than mining data streams, is the process of eliminating a batch of sub-
sequent elements from being analyzed rather than checking each element that
is used in the sampling technique. Fig. 2 illustrates the idea of data rate adap-
tation from the input side using sampling.

Fig. 2. Data Rate Adaptation using Sampling

2) Output concept level: using the higher concept level in applying data min-

ing in order to cope with the data rate, that is to categorize the incoming ele-
ments into a limited number of categories and replacing each incoming ele-
ment with the matching category according to a specified measure or a look-
up table. This would produce fewer results conserving the limited memory.
Moreover, it would require fewer number of processing CPU cycles.

3) Approximate algorithms: design one pass mining algorithms to approxi-
mate the mining results according to some acceptable error margin.

4) On-board analysis: To avoid transferring huge amounts of data, the data
mining would be done at the data source location. For example, (VEDAS)
project [20], (EVE) project [30] and Diamond Eye project [5]. This however
assumes the availability of significant computational resources at the site of
data stream generation.

5) Algorithm output granularity: This is our proposed solution approach. It
uses a control parameter as a part of the algorithm logic to control the output
rate of the algorithm according to the available memory, the remaining time
to fill the available memory before incremental knowledge integration takes
place and the data rate of the incoming stream. Fig. 3 shows the idea of our
proposed approach.

Fig. 3. Algorithm Output Granularity Approach

Algorithm output granularity:
To demonstrate our approach in mining data streams, we first define the following

terms:
Algorithm threshold: is a controlling parameter built in the algorithm logic that

encourages or discourages the creation of new outputs according to three factors that
vary over temporal scale:

a) Available memory.
b) Remaining time to fill the available memory.
c) Data stream rate.

Output granularity: is the amount of generated results that are acceptable accord-
ing to specified accuracy measure. This amount should be resident in memory before
doing any incremental integration.

Time threshold: is the required time to generate the results before any incremental
integration according to some accuracy measure. This time might be specified by the
user or calculated adaptively based on the history of running the algorithm.

The main steps for mining data streams using our proposed approach:
1) Determine the time threshold and the algorithm output granularity.
2) According to the data rate, calculate the algorithm output rate and the algo-

rithm threshold.
3) Mine the incoming stream using the calculated algorithm threshold.
4) Adjust the threshold after a time frame to adapt with the change in the data

rate using linear regression.
5) Repeat the last two steps till the algorithm lasts the time interval threshold.
6) Perform knowledge integration of the results.
The following section will show the use of algorithm output granularity in cluster-

ing, classification and frequent items mining algorithms.

3 Algorithm Granularity based Mining Techniques

In the following subsections, we show the application of the algorithm output granu-
larity to clustering, classification and frequent items.

3.1 LWC

In this section, our one-look clustering algorithm (LWC) is explained and discussed.
The algorithm has two main components. The first one is the resource-aware RA com-
ponent that uses the data adaptation techniques to catch up with the high-speed data
stream and at the same time to achieve the optimum accuracy according to the avail-
able resources. The process starts by checking the minimum data rate that could be
achieved using data adaptation techniques with an acceptable accuracy. If the algo-
rithm can catch up with the minimum data rate, the RA component tries to find a solu-
tion that maximizes the accuracy by increasing the data rate. Otherwise the algorithm
should send a data mining request to a data mining server that can achieve the mini-
mum acceptable accuracy.

The other component is the LWC algorithm. The algorithm follows the following
steps:

1- Data items arrive in sequence with a data rate.
2- The algorithm starts by considering the first point as a center.
3- Compare any new data item with the centers to find the distance.
4- If the distance for all the centers is greater than a threshold, the new item is

considered as a new center; else increase the weight for the center that has
the shortest distance between the data item and the center by 1 and let the
new center equals the weighted average.

5- Repeat 3 and 4.
6- If the number of centers = k (according to the available memory) then create

a new centers vector.
7- Repeat 3, 4, 5, and 6.
8- If memory is full then re-cluster (integrate clusters) and send to the server if

needed.
The algorithm output granularity (k) is represented here by the number of cluster

centers’ kept in memory before doing any incremental re-clustering. The higher the
algorithm granularity the higher is the algorithm accuracy. The threshold value here
represents the minimum distance between any point and the cluster center. The lower
the threshold the more the clusters is created.

Fig. 4 shows the pseudo code for this algorithm. The following is the notation used

in the algorithm pseudo code.
Let D be the data rate in items/second.
Let Max(D) be unfiltered data rate in items/second.
Let Min(D) be filtered and aggregated data rate in items/second.
Let AR be algorithm rate: number of centers generated by the algorithm in cen-
ters/second.
Let Dist be the minimum distance between any point and the cluster center.
Let M be number of memory blocks, each block can store one center.
Let T be the time needed for generating a number of Centers that can fit all the
memory blocks in seconds.
Let TT be the time threshold that is required for the algorithm accuracy in sec-

onds.

Fig. 4. Light-Weight Clustering Algorithm

The algorithm according to the given threshold and the data set domain generates

the maximum number of subsequent data items, each of which represents a center; that
will be given using the following formula:

Maximum number of subsequent data points that could be centers = [(Maxi-
mum item value in the data set - Minimum item value in the data set) / thresh-
old].

Since these points in the worst case might be the first points in the data stream in
order for them to be centers, the following formula gives the number of data elements
that would do the comparison over the generated centers:

Cluster Members = Data Set Size - [(Maximum item value in the data set -
Minimum item value in the data set) / threshold].

Thus the algorithm complexity is O(nm), where “n” is the data set size, and “m” is
maximum number of subsequent data points that could be centers.

We have performed experimental evaluation and compared our algorithm with k-
means. The results presented in Section 4 shows that our algorithm outperforms k-
means in running time with an acceptable accuracy.

1. x = 1, c=1, M = number of memory blocks avail-
able

2. Receive data item DI[x].
3. Center[c] = DI[x].
4. M = M -1
5. Repeat

a. x = x+1
b. Receive DI[x]
c. For i = 1 to c

Measure the distance between Center[i]
and DI[x]

 d. If distance > dist (The threshold)
 Then

 c=c+1
 if (M <> 0)
 Then
 Center[c] = DI[x]
 Else
 Recluster DI[]
Else
For j=1 to c

Compare between Center[j] and DI[x] to
find the shortest distance.
Increase the weight for the Center[j] with
the shortest distance.
Center[j] = (Center[j] * weight + DI[x]) /
(weight + 1)

Until Done

3.2 LWClass

In this section, we present the application of the algorithm output granularity to light
weight K-Nearest-Neighbors classification LWClass. The algorithm starts with deter-
mining the number of instances according to the available space in the main memory.
When a new classified data element arrives, the algorithm searches for the nearest
instance already in the main memory according to a pre-specified distance threshold.
The threshold here represents the similarity measure acceptable by the algorithm to
consider two or more elements as one element according to the element attributes’
values. If the algorithm finds this element, it checks the class label. If the class label is
the same, it increases the weight for this instance by one, otherwise it decrements the
weight by one. If the weight becomes zero, this element will be released from the
memory. The algorithm granularity here could be controlled by the distance threshold
value and could be changing over time to cope with the high speed of the incoming
data elements. The algorithm procedure could be described as follows:

1) Data streams arrive item by item. Each item contains attribute values for a1,
a2, …,an attributes and the class category.

2) According to the data rate and the available memory, we apply the algorithm
output granularity as follows:

a) Measure the distance between the new item and the stored ones.
b) If the distance is less than a threshold, store the average of these two

items and increase the weight for this average as an item by 1. (The
threshold value determines the algorithm accuracy and should be
chosen according to the available memory and data rate that deter-
mines the algorithm rate).
This is in case that both items have the same class category. If they
have different class categories, we delete both).

c) After a time threshold for the training, we come up with a sample
result like the one in table 1.

Table 1. Sample LWClass Training Results

A1 A2 … An Cl

ass
Weight

Value(a1) Value(a2) … Value(an) Class
cate-
gory

X (represents that X
items contribute in the

values of this tuple)

Value(a1) Value(a2) … Value(an) Class
cate-
gory

Y

Value(a1) Value(a2) … Value(an) Class
cate-
gory

Z

3) Using the above table, we have some items that we need to classify them.

According to the available time for the classification process, we choose

nearest K-items and these items will be variable according to the time needed
by the process.

4) Find the majority class category taking into account the calculated weights
from the K items and this will be the answer for this classification task.

3.3 LWF

In this section, we present light-weight frequent items LWF algorithm. The algorithm
starts by setting the number of frequent items that will be calculated according to the
available memory. This number changes over time to cope with the high data rate. The
main idea behind the algorithm is the algorithm output granularity. The AG is repre-
sented here by the number of frequent items that the algorithm can calculate as well as
the number of counters that will be re-set after some time threshold to be able to cope
with the continuous nature of the data stream. The algorithm receives the data ele-
ments one by one and tries to find a counter for any new item and increase the item for
the registered items. If all the counters are occupied, any new item will be ignored and
the counters will be decreased by one till the algorithm reaches some time threshold a
number of the least frequent items will be ignored and their counters will be re-set to
zero. If the new item is similar to one of the items in memory according to a similarity
threshold, the average of both items will be allocated and the counter will be increased
by one. The main parameters that can affect the algorithm accuracy are time threshold,
number of calculated frequent items and number of items that will be ignored and their
counter will be re-set after some time threshold. Fig. 5 shows the algorithm outline
for the LWF algorithm.

Fig. 5. LWF Algorithm

4 Empirical studies for LWC

In this section, we discuss our empirical results for the LWC algorithm. The experi-
ments were conducted using Matlab 6.0 in which the LWC is developed and the k-
means algorithm included in the Matlab package is used as a guide to measure the
algorithm accuracy. The experiments were conducted using a machine with Pentium 4
CPU 2.41 GHz, 480 MB of RAM, and running Windows XP Professional operation
system.

There are three main parameters that we measure in our experiments; algo-
rithm threshold, running time and accuracy. We have conducted a number of experi-
ments to evaluate the algorithm.

Experiment 1: (Fig. 6)
Aim: Measure the algorithm running time with different threshold values.
Experiment Setup: Running LWC several times using different threshold values

with a synthesized data set.
Results: The higher the threshold the lower the running time.

1- Set the number of the top frequent items to k.
2- Set a counter for each k.
3- Repeat

a. Receive the item.
b. If the item is new and one of the k count-

ers are 0
Then
Put this item and increase the counter by
1.
Else
If the item is already in one of the k
counters.
Then

 Increase the counter by 1.
 Else

If the item is new and all the counters are
full

 Then
 Check the time

If time > Threshold Time
Then
Re-set number of least n of k counters to 0
Put the new item and increase the counter
by 1
Else
Ignore the item.

 Decrease all the counters by 1.
 Until Done

Fig. 6. LWC Running Time.

Analysis: We have to minimize the threshold according to the available resources

of memory and CPU utilization. The threshold is an rate output adaptation technique.
That is because the threshold value controls the algorithm rate (The higher the thresh-
old the lower the algorithm rate). On the other hand, we can use the threshold as an
application-oriented parameter that does not affect the accuracy; however it might
increase it according to some domain knowledge about the clustering problem that
might be known in advance.

Experiment 2: (Fig. 7)
Aim: Measuring the algorithm accuracy with different threshold values.
Experiment Setup: Running LWC and K-means several times with different

threshold values. The experiment is repeated three times with different data set sizes.
Results: The lower the threshold the higher the accuracy of the algorithm which is

measured as follows: Accuracy (LWC) = average (|sorted LWC centers – sorted K-
means centers|). The lower this measure will be, the higher the accuracy.

Fig. 7. LWC Accuracy (DS Size measured in number of data items).

Analysis: Choosing the threshold value is an important issue to achieve the re-

quired accuracy. It should be pointed out that from this experiment and the previous

one the higher the accuracy the higher the running time. And that both factors are
affected by the threshold value.

Experiment 3: (Fig. 8)
Aim: Comparison of K-means and LWC centers.
Experiment setup: Running LWC and K-means several times with the same

threshold but different data set sizes.
Results: Assuming that the accuracy of K-means algorithm is high because it mines

static data sets with any number of passes. The experiment shows that LWC generates
similar centers that K-means algorithm generates.

Fig. 8. LWC compared to K-means

Analysis: The accuracy of LWC is acceptable because it is very similar to k-means

results that process the data set as static stored data set and not streaming data. That
means that k-means algorithm performs several passes over the data set to result in the
final cluster centers. As shown in the figure, the seven experiments show very similar
cluster centers for our one-pass algorithm compared to k-means.

Experiment 4: (Fig. 9)
Aim: Measure the LWC algorithm running time against the data set sizes.
Experiment setup: Running the LWC algorithm with different large data sets.
Results: The algorithm has a linear relation with the data set size.

Fig. 9. LWC running time with different data set sizes

Analysis: the LWC algorithm is efficient for large data sets due to the linearity of

the running time with data set size. This linearity results from performing only one-
pass over the data stream. It is worth to point out here that the data stream rate is the
major factor that control the behavior of LWC since the higher the rate the larger the
size of the data set.

Experiment 5: (Fig. 10)
Aim: Measuring the effect of the threshold on the above experiment.
Experiment setup: Running LWC algorithm with the same data set sizes as the

above experiment, but with decreasing threshold value with each run.
Results: The threshold value affects the running time of the algorithm since the

maximum running time in the above experiment is approximately 12 seconds. The
maximum running time in this experiment is about 47 seconds.

Fig. 10. LWC running time with different data set sizes and threshold values

Analysis: According to the application and/or the required accuracy, we have to

maximize the threshold value to have more efficient algorithm in terms of running

time. The algorithm threshold would be controlled according to the available memory
and a time threshold constraint that represents the algorithm accuracy.

Experiment 6: (Fig. 11)
Aim: Comparison between K-means and LWC efficiency.
Experiment setup: Running LWC (with a small threshold value which results in a

high accuracy) and K-means several times on the same data sets with different sizes
and measuring the running time.

Results: The running time of LWC is low compared to K-means with small data set
sizes.

Fig. 11. K-means and LWC comparison in terms of running time

Analysis: LWC is efficient compared to K-means for small data sets, when we try

to run both on large data sets; we found that LWC outperforms the K-means. The
LWC runs with highest possible accuracy (the least threshold value) and outperforms
k-means with different data set sizes.

The above experiments show an efficient one-look clustering algorithm that is
adaptable to the available resources using our algorithm output granularity approach.
The LWC outperforms k-means in terms of running time and has the advantage of
linearity of running time with the increase in the data set sizes. The algorithm thresh-
old is the controlling parameter of algorithm accuracy, efficiency, and algorithm out-
put rate.

5 Related Work

There are different algorithms proposed to deal with the high speed nature for mining
data streams using different techniques. Clustering data streams has been studied in
[1], [4], [6], [7], [9], [10], [15], [22], [26]. Data stream classification has been studied
in [11], [12], [18], [28], [34]. Extracting frequent items and frequent itemsets have
been studied in [8], [14], [23].

The above algorithms deal with the problem of mining data streams using different
methodologies. These algorithms basically focus on the design of approximate algo-
rithms for mining data streams. However these approaches are not resource-aware and
do not focus on adaptation strategies to cope with high data rates, our approach for
output rate adaptation is resource-aware approach that can adapt to the available re-
sources.

6 Conclusions and Future Work

In this paper, we discussed the problems of mining data streams and proposed possi-
ble solutions. Our algorithm output granularity approach in mining data streams has
been presented and discussed. The proposed approach is distinguished from previous
work in mining data streams by being resource-aware. We have developed a one-pass
mining data streams algorithm. The application of the proposed approach to cluster-
ing, classification and counting frequent items has been presented. The implementa-
tion and empirical studies of our LWC algorithm have been demonstrated. The ex-
periments showed an acceptable accuracy accompanied with efficiency in running
time that outperforms k-means algorithm. Having implemented and tested LWC, we
are developing LWClass and LWF. The application of these algorithms in a ubiqui-
tous environment is planned for future work. The simplicity, generality, and efficiency
of our proposed approach in mining data streams facilitate the application of the algo-
rithms in various scientific and business applications that require data stream analysis.

References

1. Aggarwal C., Han J., Wang J., Yu P. S.: A Framework for Clustering Evolv-
ing Data Streams. Proc. 2003 Int. Conf. on Very Large Data Bases
(VLDB'03), Berlin, Germany (2003).

2. Babcock B., Babu S., Datar M., Motwani R., and Widom J.: Models and is-
sues in data stream systems. In Proceedings of PODS (2002).

3. Babcock B., Datar M., and Motwani R.: Load Shedding Techniques for Data
Stream Systems (short paper). In Proc. of the 2003 Workshop on Manage-
ment and Processing of Data Streams (MPDS 2003) (2003).

4. Babcock B., Datar M., Motwani R., O'Callaghan L.: Maintaining Variance
and k-Medians over Data Stream Windows. To appear in Proceedings of the
22nd Symposium on Principles of Database Systems (PODS 2003) (2003).

5. Burl M., Fowlkes C., Roden J., Stechert A., and Mukhtar S. Diamond Eye: A
distributed architecture for image data mining. In SPIE DMKD, Orlando,
April (1999).

6. Charikar M., O'Callaghan L., and Panigrahy R.: Better streaming algorithms
for clustering problems. In Proc. of 35th ACM Symposium on Theory of
Computing (STOC) (2003).

7. O'Callaghan L., Mishra N., Meyerson A., Guha S., and Motwani R.: Stream-
ing-data algorithms for high-quality clustering. Proceedings of IEEE Interna-
tional Conference on Data Engineering, March (2002).

8. Cormode G., Muthukrishnan S.: What's hot and what's not: tracking most fre-
quent items dynamically. PODS 2003. (2003) 296-306

9. Datar M., Gionis A., Indyk P., Motwani R.: Maintaining Stream Statistics
over Sliding Windows (Extended Abstract). In Proceedings of 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) (2002).

10. Domingos P. and Hulten G., A General Method for Scaling Up Machine
Learning Algorithms and its Application to Clustering. Proceedings of the
Eighteenth International Conference on Machine Learning, 106--113, Wil-
liamstown, MA, Morgan Kaufmann. (2001)

11. Domingos P. and Hulten G. Mining High-Speed Data Streams. In Proceed-
ings of the Association for Computing Machinery Sixth International Confer-
ence on Knowledge Discovery and Data Mining, (2000) 71—80.

12. Ganti V., Gehrke J., Ramakrishnan R.: Mining Data Streams under Block
Evolution. SIGKDD Explorations 3(2): (2002) 1-10.

13. Garofalakis M., Gehrke J., Rastogi R.: Querying and mining data streams:
you only get one look a tutorial. SIGMOD Conference 2002: 635. (2002).

14. Giannella C., Han J., Pei J., Yan X., and Yu P.S.: Mining Frequent Patterns
in Data Streams at Multiple Time Granularities. In Kargupta H., Joshi A.,
Sivakumar K., and Yesha Y. (eds.), Next Generation Data Mining,
AAAI/MIT (2003).

15. Guha S., Mishra N., Motwani R., and O'Callaghan L.: Clustering data
streams. In Proceedings of the Annual Symposium on Foundations of Com-
puter Science. IEEE, November (2000).

16. Golab L. and Ozsu M. T. : Issues in Data Stream Management. In SIGMOD
Record, Volume 32, Number 2, June (2003) 5-14.

17. Henzinger M., Raghavan P, and Rajagopalan S.: Computing on data streams.
Technical Note 1998-011, Digital Systems Research Center, Palo Alto, CA,
May (1998).

18. Hulten G., Spencer L., and Domingos P.: Mining Time-Changing Data
Streams. ACM SIGKDD (2001).

19. Kargupta H.: CAREER: Ubiquitous Distributed Knowledge Discovery from
Heterogeneous Data. NSF Information and Data Management (IDM) Work-
shop (2001).

20. Kargupta. H.: VEhicle DAta Stream Mining (VEDAS) Project.
http://www.cs.umbc.edu/%7Ehillol/vedas.html. (2003).

21. Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D. and Sarkar, K. (2002).
MobiMine: Monitoring the Stock Market from a PDA. ACM SIGKDD Ex-
plorations. January 2002. Volume 3, Issue 2. Pages 37--46. ACM Press.

22. Keogh E., Lin J., and Truppel W.: Clustering of Time Series Subsequences is
Meaningless: Implications for Past and Future Research. In proceedings of
the 3rd IEEE International Conference on Data Mining. Melbourne, FL. No-
vember (2003) 19-22.

23. Manku G. S. and Motwani R.: Approximate frequency counts over data
streams. In Proceedings of the 28th International Conference on Very Large
Data Bases, Hong Kong, China, August (2002).

24. Muthukrishnan S.: Data streams: algorithms and applications. Proceedings of
the fourteenth annual ACM-SIAM symposium on discrete algorithms (2003).

25. Muthukrishnan S.: Seminar on Processing Massive Data Sets. Available
Online: http://athos.rutgers.edu/%7Emuthu/stream-seminar.html (2003).

26. Ordonez C.: Clustering Binary Data Streams with K-means .ACM DMKD
(2003).

27. Park B. and Kargupta H.. Distributed Data Mining: Algorithms, Systems, and
Applications. Data Mining Handbook. Editor: Nong Ye (2002).

28. Papadimitriou S., Faloutsos C., and Brockwell A.: Adaptive, Hands-Off
Stream Mining. 29th International Conference on Very Large Data Bases
VLDB (2003).

29. Srivastava A. and Stroeve J.: Onboard Detection of Snow, Ice, Clouds and
Other Geophysical Processes Using Kernel Methods. Proceedings of the
ICML'03 workshop on Machine Learning Technologies for Autonomous
Space Applications (2003).

30. Tanner S., Alshayeb M., Criswell E., Iyer M., McDowell A., McEniry M.,
Regner K., EVE: On-Board Process Planning and Execution, Earth Science
Technology Conference, Pasadena, CA, Jun. 11 - 14, (2002).

31. Tatbul N., Cetintemel U., Zdonik S., Cherniack M. and Stonebraker M.:
Load Shedding in a Data Stream Manager. Proceedings of the 29th Interna-
tional Conference on Very Large Data Bases (VLDB), September (2003).

32. Tatbul N., Cetintemel U., Zdonik S., Cherniack M. and Stonebraker M.:
Load Shedding on Data Streams. In Proceedings of the Workshop on Man-
agement and Processing of Data Streams (MPDS 03), San Diego, CA, USA,
June (2003).

33. Viglas S. D. and Naughton J.: Rate based query optimization for streaming
information sources. In Proc. of SIGMOD (2002).

34. Wang H., Fan W., Yu P. and Han J.: Mining Concept-Drifting Data Streams
using Ensemble Classifiers. In the 9th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), Aug., Washington DC,
USA (2003).

