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1 Introduction

This study is a technical supplement to “AI gone astray: How subtle shifts in patient data send popular
algorithms reeling, undermining patient safety.” from STAT News1, which investigates the effect of
time drift on clinically deployed machine learning models. We use MIMIC-IV, a publicly available
dataset, to train models that replicate commercial approaches by Dascena and Epic to predict the
onset of sepsis, a deadly and yet treatable condition. We observe some of these models degrade over
time; most notably an RNN built on Epic features degrades from a 0.729 AUC to a 0.525 AUC over a
decade, leading us to investigate technical and clinical drift as root causes of this performance drop.

2 Methods

Dataset We investigate time drift using the MIMIC-IV database [1], which includes electronic
health records of over 50,000 patients admitted to the intensive care units at the Beth Israel Deaconess
Medical Center (BIDMC) between the years 2008-2019. We filter for patients over the age of 15,
with an ICU stay between 24 hours and 10 days, and take each patient’s first ICU stay (see Figure 1).
After all filtering, we end up with 50k patients in our dataset.

∗These two authors contributed equally
1www.statnews.com/2022/02/28/sepsis-hospital-algorithms-data-shift
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Figure 1: Cohort filtration process for MIMIC-IV

Sepsis Prediction Task Sepsis is a potentially life-threatening condition where a body’s reaction
to an infection triggers damage in organ systems. Following recent work [2, 3], we predict the onset
of Sepsis-3 within 6 hours given 24 hours of ICU data. Sepsis-3 defines sepsis onset as an increase in
SOFA-score of >= 2 points within a window of 48 hours before and 24 hours after a Suspicion of
Infection, which occurs when there are concomitant orders of antibiotics and microbiological samples
taken. We follow the implementation of Moor et al. [2], and use the SOFA value in the first hour of a
patient’s ICU stay as the baseline score for later comparisons.

Start of
ICU stay

End of ICU
stay

24 hours of ICU Data

Sepsis Onset
Time

6 hours gap

Positive Sepsis Patient

Start of
ICU stay

End of ICU
stay

24 hours of ICU Data

Random Control
Onset Time

6 hours gap

Control Patient

Figure 2: Top: data construction process for a positive sepsis patient, taking their first sepsis onset
time during their ICU stay. Bottom: data construction process for a control patient with no sepsis
onset during their ICU stay, assigning a random "onset" time for data extraction purposes.

Cohort Construction See Figure 2 for our cohort construction procedure. For patients with a
positive sepsis label, the first instance of sepsis onset was taken to be the sepsis onset time. Following
prior work by the Dascena group, [4], we assign a random "onset" time for control patients with no
sepsis onset during their stay. For both positive and control samples, we extract 24 hours of ICU
data preceding a 6 hour gap period before their onset time. We eliminate all patients with an onset

2



time before 6 hours. For patients who have less than 24 hours of data after extraction, we left pad all
non-existent hours with zeros.

Modeling Commercial Tools We model two commercial sepsis detection systems: Dascena’s [4]
and Epic Systems’. Their specific model implementations are not publicly available, so we use
their known features to build our own models on MIMIC-IV and experiment with different model
architectures. Dascena’s sepsis models include a combination of six vital signs – systolic blood
pressure, diastolic blood pressure, heart rate, respiratory rate, peripheral oxygen saturation (SpO2),
and temperature – and patient age. Epic’s sepsis models include more than 40 high level features,
generally divided into 6 categories: Demographics, Vital Signs, Recent Lab Results, Chronic Illness
Diagnoses, Medication Orders, and Active Drains, Airways or Wounds.

These models leveraged two types of patient features: static demographic features, and time-varying
features. For the former, one value per feature is included for each patient. For the latter, we follow
prior work [5, 2] and aggregate multiple irregularly-measured values into hourly buckets for each
hour of a patient’s ICU stay. Vital sign measurements are aggregated by taking the average of all
measurements in the hour, while events such as medication, infusions or drainages are aggregated by
taking the sum across the hour. For each feature, we simply take their raw representation, as identified
by each feature’s unique item ID from the MIMIC-IV dataset. To account for data missingness in
time-varying features, we implement simple imputation [6], which involves forward-filling each
feature for each patient by hour, then concatenating binary flags for whether a feature was originally
missing and another value for the time it was last recorded. A detailed list of the features we used
and their Item ID’s in MIMIC-IV can be found in Appendix A.

2.1 Model Details

To investigate the impact of model architecture on performance degradation, we experimented with
both Logistic Regression models and Elman RNNs[7]. Reference our code repository for specific
model implementation and training details.

X hourly features * 24 hours of data Y static features

24

X

rnn dim

RNN MLP

Linear Layer

1 0 1 0

flatten

X*24 features

Y

flatten

Temperature, blood pressure, white blood cell count, etc. Age, sex, ethnicity, diagnoses, etc.

24

Linear Layer

Steps for Logistic Regression modelSteps for RNN model

Figure 3: Model architectures for Logistic Regression and RNN models

Logistic Regression Our Logistic Regression baseline is illustrated in Figure 3. Following Nestor
et al.[5]’s work, we first flatten all hourly features, treating each measurement at each hour as a
separate column. We then concatenate the result with the patient’s static features to form the overall
feature vector for the patient. In the context of Dascena features, static features include age, and hourly
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features include all vital sign measurements. In the context of Epic features, static features include
demographic features and diagnoses codes, and hourly features include all vital sign measurements,
medications, and lab measurements.

RNN To capture recurrent features, we implement an Elman RNN[7]. As depicted in Figure 3,
static features are first fed through a separate 4-layer MLP (of 32 neurons in each layer, preceded
by batch-normalization and succeeded by ReLU activation), while hourly features are fed directly
through the Elman RNN. Then, the output hidden representations from the MLP are concatenated
with the output hidden representations of the RNN before feeding everything through a final linear
layer.

3 Experiments

3.1 Time Drift Experiments

We seek to investigate how different models replicating commercial feature sets would age in clinical
settings. To understand why model performance may change over time, we investigate technical and
clinical sources of data shift.

Year Agnostic Similar to common model development practices, we report numbers from models
trained and tested on the full set of MIMIC-IV patient data from 2008-2019, with patients randomly
assigned to either training, validation or testing regardless of the year of care.

Year Buckets To measure temporal model drift, we train on a subset of patient data in the 2008-
2010 bucket, then test on patient data from the unseen portion of the 2008-2010 bucket as well as the
entirety of the data in the subsequent three year buckets 2011-2013, 2014-2016, and 2017-2019.

3.2 Investigating Cause of Time Drift

We investigate two causes of model drift: technical drift, and data drift. To investigate technical drift,
we analyzed the effect of Beth Israel’s switch in use of diagnoses codes from ICD-9 to ICD-10 in
October 2015. We investigate the impact of these changing codes on model performance by removing
all features from the Epic feature set that rely on ICD codes (HIV, obesity, coronary artery disease,
congestive heart failure, chronic obstructive pulmonary disease, chronic kidney disease, chronic liver
disease, diabetes, and hypertension), and retraining a new model with all other hyper-parameters kept
constant. To investigate data shift over time, we plotted sepsis onset times, microbiology samples,
and antibiotic usage trends over the years.

4 Results

We ran each combination of feature set, model, and training regime three times to measure the models’
performance. The average AUCs from the three runs are reported in Tables 1 and 2. Overall, we
observe a large drop in performance for models trained on the Epic feature set, especially the RNN.
The models trained on the Dascena model also experienced some performance degradation, but on a
much smaller scale.
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4.1 Time Drift Experiments

Year Buckets

Model Year-Agnostic 2008-2010 2011-2013 2014-2016 2017-2019

Dascena Features
RNN 0.764 0.723 0.726 0.730 0.707
Logistic 0.731 0.687 0.696 0.682 0.640

Epic Features
RNN 0.787 0.729 0.723 0.578 0.525
Logistic 0.724 0.706 0.701 0.679 0.626

Table 1: Time agnostic and year bucket results (average test AUCs of three runs) from RNN and
Logistic Regression models trained on the Epic and Dascena feature sets.

We observe in Table 1 that the models trained on Epic’s feature set dropped from 0.729 to 0.525 for
the RNN model, and from 0.706 to 0.626 for the Logistic Regression model. This amounts to a 0.08
to 0.20 difference in test AUC over the years. These results indicate that several Epic features vary
over time. In contrast, models built on Dascena features, which contain mainly vital signs, perform
significantly better over time. We found a small temporal drop in AUC from 0.723 to 0.707 for the
RNN model and a slightly larger AUC drop from 0.687 to 0.640 for the Logistic Regression model.
In addition, we note that the choice in model architecture impacts performance drop, as we found that
there is a much larger drop for the RNN model than the Logistic Regression model trained on Epic’s
feature set, while the opposite was true for models trained on the Dascena feature set. We also include
results for two additional time drift experiments, Length of Stay and ICU Mortality prediction, in
Appendix B.

4.2 Time Drift Investigations

Year Buckets

Model Year-Agnostic 2008-2010 2011-2013 2014-2016 2017-2019

RNN 0.783 0.716 0.731 0.721 0.671
Logistic 0.669 0.715 0.702 0.692 0.633

Table 2: Average test AUCs from models trained on the Epic feature subset without ICD codes.

Technical Change Investigation In Table 2, we report the results of models trained on a subset of
the Epic feature set without ICD codes. We found that without the ICD codes, the AUC drop across the
entire time period is now 0.08 for the Logistic Regression model and 0.045 for the RNN. Compared
to the RNN model trained on the full Epic feature set, this represents a significant improvement of
around 0.15 for the last year bucket. Because models trained on the first year bucket only observed
ICD-9 codes, they were unable to leverage ICD-10 features when the transition occurred.

We notice that the introduction of the ICD codes did not contribute to higher overall model perfor-
mance, as seen by the year-agnostic numbers in Table 1 and Table 2. However, the inclusion of these
features instead led to significant model degradation.
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Figure 4: Sepsis onset time in the ICU by year bucket groups.

Figure 5: Microbiology samples across year buckets and time into ICU stay.

Figure 6: Antibiotics administered across year buckets and time into ICU stay.

Figure 7: Microbiological culture types with the largest drop in number of samples taken across year
bucket groups.
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Specimen Type 2008-2010 2011-2013 2014-2016 2017-2019 Change % Change
SWAB 92304 79169 68363 39677 -52627 -57%

MRSA SCREEN 39086 34375 14766 5657 -33429 -86%
BLOOD CULTURE 171630 158924 163711 144620 -27010 -16%

SPUTUM 52437 39027 40078 32135 -20302 -39%
SEROLOGY/BLOOD 35713 35489 32866 16187 -19526 -55%

STOOL 47316 38649 38166 28502 -18814 -40%
IMMUNOLOGY 13524 14336 11085 209 -13315 -98%

URINE 221335 211626 263363 234576 +13241 +6%
BONE MARROW - CYTOGENETICS 7442 3643 5 0 -7442 -100%

TISSUE 21455 26311 32957 28481 +7026 +33%
Immunology (CMV) 5921 5278 4285 42 -5879 -99%

CATHETER OR LINE 6862 3653 2014 1397 -5465 -80%
CSF;SPINAL FLUID 10725 8527 8601 6333 -4392 -41%

BRONCHIAL WASHINGS 2214 2577 5087 6442 +4228 +191%
Influenza A/B by DFA 4214 2771 532 0 -4214 -100%

ABSCESS 9597 11657 12734 13796 +4199 +44%
Blood (LYME) 0 4 2414 3815 +3815 +100%

PLEURAL FLUID 7560 7560 8834 9826 +2266 -30%
BRONCHOALVEOLAR LAVAGE 12772 10930 13205 10523 -2249 -18%

Staph aureus Screen 3609 9151 11949 5608 1999 +55%

Table 3: Specimen types with greatest absolute change between 2008-2010 and 2017-2019 year
buckets. “Change” and “% Change” refers to the difference between the first and the last year buckets.

Figure 8: Amount of cultures drawn for each hour of the day, per year-bucket.

Data Change Investigation We plot all data changes in Figures 4-8 and Table 3. While we see no
major changes in antibiotics administered, we see a large increase in average sepsis onset time from
9 hours to 12 hours by the last year bucket, accompanied by a drop in microbiology samples taken
within the first 10 hours of a patient’s ICU stay. Figure 7 shows a select few of the microbiological
sample types with the largest changes across the years, and Table 3 shows the full numbers in detail.
Since the definition of Sepsis-3 onset depends on a suspicion of infection, which is influenced by the
timing of microbiology samples, we observe that these two changes are related. Finally, Figure 8
shows that the drop in number of samples occurs mainly during daytime hours (between 9 AM and 5
PM).

Clinical sources we interviewed explained that changing hospital demographics, caused by multiple
new hospital acquisitions and partnerships, in recent years could have been the cause of changing
clinical practices around microbiology sampling and other ICU procedures.

5 Conclusion

By replicating commercially produced sepsis prediction models on the MIMIC-IV dataset, we were
able to observe the extent of model degradation over time. We found a significant AUC drop of 0.08
to 0.20 for models trained on the Epic feature set, while a smaller drop of 0.02 to 0.05 was observed
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for models trained on the more stable Dascena feature set. We concluded that the technical shift of
changing ICD codes from ICD-9 to ICD-10 in 2015 was a major cause of degradation in the former
models, as the performance drop diminished by 0.15 after the models were retrained without ICD
codes. Finally, we observed a data shift in later years from changing microbiology sampling practices
in the ICU, which had an impact on delaying sepsis onset times in the last year bucket.

Limitations There are several limitations to this study. First, because the Epic and Dascena models
are not publicly available, we trained our models leveraging their published feature sets on MIMIC-IV.
These features can be found in Appendix A. Our results do not directly reflect the performance
of Epic or Dascena’s commercial models. Second, this study does not account for possible model
retraining procedures a hospital could undertake to diminish the impact of model degradation in
clinical settings.
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Data and Code Availability

The MIMIC-IV dataset is freely available provided you have completed CITI certification. It can be
downloaded from https://physionet.org/content/mimiciv/1.0/.

All code used to reproduce the results in this report (including instructions on how to do so) is openly
available at https://github.com/mariehane/ai-gone-astray.
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A Feature Lists and Origin Categories

Below are the features we found in MIMIC-IV that best approximate the feature categories used by
Dascena and Epic’s models, given that their code is not publicly available. For Epic’s feature set, we
were unable to find certain feature results in the MIMIC database, including medicines administered
by category and the exact mapping of ICD codes for all diagnoses used.

A.1 Dascena Features

High-level feature Itemid Low-level label Origin

diastolic blood pressure

8441 nbp [diastolic] chartevents
8368 arterial bp [diastolic] chartevents
220180 non invasive blood pressure diastolic chartevents
220051 arterial blood pressure diastolic chartevents
225310 art bp diastolic chartevents
8555 arterial bp #2 [diastolic] chartevents
8440 manual bp [diastolic] chartevents
224643 manual blood pressure diastolic left chartevents

systolic blood pressure

455 nbp [systolic] chartevents
51 arterial bp [systolic] chartevents
220179 non invasive blood pressure systolic chartevents
220050 arterial blood pressure systolic chartevents
225309 art bp systolic chartevents
6701 arterial bp #2 [systolic] chartevents
442 manual bp [systolic] chartevents
224167 manual blood pressure systolic left chartevents
227243 manual blood pressure systolic right chartevents

heart rate 211 heart rate chartevents
220045 heart rate chartevents

temperature

678 temperature f chartevents
677 temperature c (calc) chartevents
223761 temperature fahrenheit chartevents
679 temperature f (calc) chartevents
676 temperature c chartevents
223762 temperature celsius chartevents

respiratory rate

618 respiratory rate chartevents
220210 respiratory rate chartevents
615 resp rate (total) chartevents
614 resp rate (spont) chartevents
224689 respiratory rate (spontaneous) chartevents
224690 respiratory rate (total) chartevents
651 spon rr (mech.) chartevents
224422 spont rr chartevents

oxygen saturation

646 spo2 chartevents
220277 o2 saturation pulseoxymetry chartevents
834 sao2 chartevents
220227 arterial o2 saturation chartevents

Table 4: Full Dascena feature set

A.2 Epic Features

Feature Origin

age patients

ethnicity admissions

martial status admissions

gender patients

Table 5: Static demographical features used by Epic’s model
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High-level feature Itemid Low-level label Origin

creatinine
791 creatinine (0-1.3) chartevents
1525 creatinine chartevents
220615 creatinine chartevents

heart rate 211 heart rate chartevents
220045 heart rate chartevents

hematocrit 813 hematocrit chartevents
220545 hematocrit (serum) chartevents

hemoglobin 814 hemoglobin chartevents
220228 hemoglobin chartevents

platelets 828 platelets chartevents
227457 platelet count chartevents

red blood cell count 833 rbc chartevents

respiratory rate

614 resp rate (spont) chartevents
615 resp rate (total) chartevents
618 respiratory rate chartevents
651 spon rr (mech.) chartevents
220210 respiratory rate chartevents
224422 spont rr chartevents
224689 respiratory rate (spontaneous) chartevents
224690 respiratory rate (total) chartevents

respiratory rate set 619 respiratory rate set chartevents
224688 respiratory rate (set) chartevents

temperature

676 temperature c chartevents
677 temperature c (calc) chartevents
678 temperature f chartevents
679 temperature f (calc) chartevents
223761 temperature fahrenheit chartevents
223762 temperature celsius chartevents

white blood cell count

861 wbc (4-11,000) chartevents
1127 wbc (4-11,000) chartevents
1542 wbc chartevents
220546 wbc chartevents

Band neutrophils 51144 Bands labevents

Base excess 50802 Base Excess labevents

Lymphocyte 51244 Lymphocytes labevents

Mean corpuscular hemoglobin concentration 51249 MCHC labevents

Monocytes 51254 Monocytes labevents

Neutrophils 51256 Neutrophils labevents

Nucleated red blood cell count 51257 Nucleated Red Cells labevents

Red Blood Cell morphology 52171 RBC Morphology labevents

Red Blood Cell distribution width 52204 RBCDist labevents

reticulocyte count 51282 Reticulocyte Count, Absolute labevents

Segmented neutrophil count 51232 Hypersegmented Neutrophils labevents
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High-level feature Itemid Low-level label Origin

Peripherally inserted central catheters 224264 PICC Line procedureevents

Central venous catheters 225315 Tunneled (Hickman) Line procedureevents

Drains

225447 percutaneous drain insertion procedureevents
225456 ventricular drain procedureevents
226475 intraventricular drain inserted procedureevents
229523 subdural drain procedureevents
229524 lumbar drain procedureevents

Feeding tube
224007 gi #1 intub site chartevents
224441 gi #2 intub site chartevents
224442 gi #3 intub site chartevents

Incision

227472 incision site #1 chartevents
227473 incision site #2 chartevents
227474 incision site #3 chartevents
227475 incision site #4 chartevents
227476 incision site #5 chartevents
227477 incision site #6 chartevents
228559 incision #1- location chartevents
228560 incision #2- location chartevents
228561 incision #3- location chartevents
228562 incision #4- location chartevents
228563 incision #5- location chartevents
228564 incision #6- location chartevents
229015 incision #7- location chartevents
229016 incision #8- location chartevents
229017 incision #9- location chartevents
229018 incision #10- location chartevents

Pressure Ulcers

228506 pressure ulcer #1- location chartevents
228507 pressure ulcer #2- location chartevents
228508 pressure ulcer #3- location chartevents
228509 pressure ulcer #4- location chartevents
228510 pressure ulcer #5- location chartevents
228511 pressure ulcer #6- location chartevents
228512 pressure ulcer #7- location chartevents
228513 pressure ulcer #8- location chartevents
228514 pressure ulcer #9- location chartevents
228515 pressure ulcer #10- location chartevents

Active penicillin orders 008880 Penicillin V Potassium prescriptions
043350 Penicillin G Benzathine prescriptions

Active vancomycin orders

043952 Vancomycin prescriptions
009331 Vancomycin prescriptions
009328 Vancomycin prescriptions
009329 Vancomycin prescriptions
067111 Vancomycin prescriptions
020611 Vancomycin prescriptions

Table 6: Time-varying Epic features.

Feature ICD Code ICD Version Origin

Diabetes E11 ICD-10 diagnoses_icd
E10 ICD-10 diagnoses_icd

Hypertension I10 ICD-10 diagnoses_icd

HIV 42 ICD-9 diagnoses_icd
B20 ICD-10 diagnoses_icd

Obesity 27800 ICD-9 diagnoses_icd
E66 ICD-10 diagnoses_icd

Coronary Artery Disease 41400 ICD-9 diagnoses_icd
I251 ICD-10 diagnoses_icd

Congestive Heart Failure
I502 ICD-10 diagnoses_icd
I503 ICD-10 diagnoses_icd
I504 ICD-10 diagnoses_icd

Chronic Obstructive Pulmonary Disease (COPD) J44 ICD-10 diagnoses_icd

Chronic Kidney Disease I13 ICD-10 diagnoses_icd
I12 ICD-10 diagnoses_icd

Chronic Liver Disease 5719 ICD-9 diagnoses_icd
K76 ICD-10 diagnoses_icd

Table 7: Epic features based on ICD-codes.
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B Other Prediction Tasks

To validate our results of temporal drift with Nestor et al.’s [5] experiments on MIMIC-III, we
followed a similar setup to run experiments on Length of Stay and ICU Mortality prediction tasks on
MIMIC-IV, with results in Table 8 and Table 9. The length of stay prediction task involves taking
the first 24 hours of data of a patient’s stay in the ICU, and predicting whether this patient’s specific
stay in the ICU would last >= 3 days (a binary prediction task). The ICU mortality task uses the
same feature set as the LOS prediction task, and likewise uses the first 24 hours of data of a patient’s
ICU stay to predict whether a patient would die in the ICU during this particular stay. The features
used for both prediction tasks were the same 8 demographic variables and 141 vital signs from the
chartevents table used by Nestor et al.

B.1 Length-of-stay (LOS) Results

Year Buckets

Model Year-Agnostic 2008-2010 2011-2013 2014-2016 2017-2019

RNN 0.658 0.661 0.635 0.623 0.564
Logistic 0.601 0.620 0.600 0.585 0.549

Table 8: Results from Length-of-stay prediction on MIMIC-IV, trained on raw data representations

B.2 ICU Mortality Results

Year Buckets

Model Year-Agnostic 2008-2010 2011-2013 2014-2016 2017-2019

RNN 0.830 0.745 0.760 0.776 0.777
Logistic 0.680 0.696 0.684 0.693 0.690

Table 9: Results from ICU Mortality prediction on MIMIC-IV, trained on raw data representations
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