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ABSTRACT
Electrocardiogram (ECG) has been widely used for emotion recog-
nition. This paper presents a deep neural network based on convo-
lutional layers and a transformer mechanism to detect stress using
ECG signals. We perform leave-one-subject-out experiments on
two publicly available datasets, WESAD and SWELL-KW, to evalu-
ate our method. Our experiments show that the proposed model
achieves strong results, comparable or better than the state-of-the-
art models for ECG-based stress detection on these two datasets.
Moreover, our method is end-to-end, does not require handcrafted
features, and can learn robust representations with only a few con-
volutional blocks and the transformer component.
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1 INTRODUCTION
Affective computing studies how machines can recognize, infer,
process, and simulate human emotions [16], with applications in
education, health care, video games, and others [16–18]. The ubiq-
uitous availability of consumer-grade wearable sensing devices that
collect biological signals (e.g., ECG) and the availability of deep
learning frameworks have facilitated affective computing technolo-
gies [4, 11, 21]. Classical machine learning and feature engineering
methods have been used to extract handcraft features and classify
affect states [1, 2, 6, 7, 21, 22]. Although handcrafted features per-
form well on emotion recognition, extracting them requires field
expertise as such features are very application-specific. Convolu-
tional layers have been employed to automate the feature extraction
process [9, 19, 20]. In addition, Transformer architectures [23] have
recently emerged as a powerful solution and an alternative to recur-
rent neural networks for processing sequential data, and have been
widely used in natural language processing [5, 25] and computer
vision [8, 10].

Due to the sequential nature of ECG time-series, transformers are
viable candidates to learn spatio-temporal representations [3, 24].
In this paper, we propose an architecture that uses ECG to detect
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Figure 1: Transformer architecture for stress detection.

stress based on a combination of convolutional and transformer ar-
chitectures. Our model uses only two convolutional blocks, which is
considerably less compared to other works in the area [14, 19]. We
test our proposed model on two publicly available affective comput-
ing datasets, WESAD [21] and SWELL-KW [13], using leave-one-
subject-out (LOSO) scheme. Initial results using LOSO demonstrate
that a fine-tuning (calibration) step is required to yield competitive
results versus prior work. We demonstrate that by fine-tuning the
model on only 10% of user-specific data, strong results are achieved.

2 METHOD
We propose an end-to-end network comprising three subnetworks,
a convolutional subnetwork, a transformer encoder, and a fully
connected (FC) subnetwork. The model and architectural details
are depicted in Figure 1. The convolutional front-end subnetwork
comprises two convolutional layers, each directly followed by a
ReLU activation and a maxpooling layer. The convolutional layers
are followed by a reshape layer to flatten the last dimension. The
role of the convolutional subnetwork is to extract spatio-temporal
features from raw input ECG signals and feed them to the encoder.
Since using a multi-head component (which will come later) results
in loss of ordering in the input sequence, a piece of information
needs to be added to the embeddings to give the encoder some sense
of order. Here, we use the positional encoder proposed by Vaswani
et al. [23] and add its output to the embeddings obtained from the re-
shape layer before supplying them to the transformer encoder. Next,
the encoder consists of a multi-head, self-attention layer, followed
by a dropout and a layer normalization, then a fully connected
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feed-forward network, and finally a dropout and a layer normaliza-
tion. We use scaled dot-product attention [23] for our model where
a query, key, and value vectors are generated. These vectors are
created for each input by multiplying the input by𝑊𝑞 ,𝑊𝑘 , and𝑊𝑣 ,
which are learned weight matrices for query, key, and value, re-
spectively. The queries, keys, and values are individually stacked to
create𝑄 , 𝐾 , and𝑉 , respectively. The attention values are then com-
puted based on [23], as 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾

𝑇

√
𝑑𝑘

)𝑉 ,
where 𝑄 ∈ 𝑅𝑛×𝑑𝑞 , 𝐾 ∈ 𝑅𝑛×𝑑𝑘 , and 𝑉 ∈ 𝑅𝑛×𝑣𝑘 . Here, 𝑛 is the length
of the sequence, and 𝑑𝑞 , 𝑑𝑘 , and 𝑑𝑣 are the embedding dimensions
of 𝑄 , 𝐾 , and 𝑉 , respectively. The scaling factor

√︁
𝑑𝑘 is added to

mitigate the softmax’s small gradient when its argument is very
large. We use four of these components in the transformer encoder.
Embeddings generated by the transformer encoder are flattened
and fed to three FC layers where each of the first two FC layers
is followed by a Rectified Linear Unit (ReLU) activation function
and the third one is followed by a sigmoid function for achieving
binary classification. The network specifications are as follows: first
convolution layer (filters = 64, kernel = 64, strides = 8), second con-
volution layer (filters = 128, kernel = 32, strides = 4), d𝑚𝑜𝑑𝑒𝑙 = 1024,
K, V, Q’s dimension = 1024, d𝑓 𝑓 = 512, heads = 4, and finally the
three FC layers’ output dimensions = 512, 256, and 1, respectively.
A dropout of 0.5 is used after each of the first two FC layers.

We implement the model in PyTorch on an NVIDIA TITAN RTX
GPU. We use an Adam optimizer with an initial learning rate of
0.0001 and exponential decay of 0.985. We use the weighted binary
cross-entropy loss to deal with the class imbalance. We train the
model for 70 epochs with a batch size of 256. Due to significant inter-
subject variability, we use a small portion of each test subject’s data
for calibrating (fining-tuning) the model. In this step, each model is
trained for 40 epochs and fine-tuned for 30 epochs.

3 EXPERIMENTS AND RESULT
Datasets.We use two publicly available datasets, Wearable Stress
and Affect Detection (WESAD) [21] and SWELL knowledge work
(SWELL-KW) [13], for evaluating our model. WESAD is a mul-
timodal dataset collected from 15 subjects using wrist-worn and
chest-worn wearable devices. The affect status of the subjects is also
recorded in the dataset. We use the ECG data from the chest-worn
device. In the SWELL-KW dataset, several modalities were recorded
from 25 subjects. In this study, we only consider the ECG modality.
Data Pre-processing. We apply a 5th-order Butterworth high-
pass filter with a cutoff frequency of 0.5 Hz on ECG similar to [15].
ECG was originally sampled at 700 Hz and 2048 Hz in WESAD
and SWELL-KW, respectively. We down-sample signals from both
datasets to 256 Hz for our study. ECG signals are normalized using
user-specific z-score normalization [19]. In terms of the output
classes, WESAD recorded three affective states, neutral, stress, and
amusement. For binary classification (stress vs. non-stress), we
merge the neutral and amusement states into a ‘non-stress’ state.
For SWELL-KW, we use the ‘neutral’ as the non-stress state and
‘time pressure’ and ‘interruptions’ as stress state.
Validation Schemes. To evaluate our model, we perform LOSO
validation. We segment the data with a window size of 30 seconds

Table 1: Classification Results. TF: Transformer, SVM: Sup-
port Vector Machine, LDA: Linear Discriminant Analysis,
QDA: Quadratic Discriminant Analysis, FT: Fine-Tuned.

Dataset Ref Method Modality Approach Acc. F1

WESAD [2] QDA ECG LOSO 85.7 -
[21] LDA ECG LOSO 85.4 81.3
Ours TF ECG LOSO 80.4 69.7
Ours TF ECG LOSO (FT) 91.1 83.3

SWELL [12] SVM Multi LOSO 58.9 –
Ours TF ECG LOSO 58.1 58.8
Ours TF ECG LOSO (FT) 71.6 74.2

Table 2: Fine-tuning results. Values are in Acc (F1) format.

Dataset No Tuning 1% 5% 10%

WESAD 80.4 (69.7) 81.6 (69.8) 89.9 (80.8) 91.1 (83.3)
SWELL-KW 58.1 (58.8) 67.4 (69.7) 68.3 (70.8) 71.6 (74.2)

and incremental steps of 1 second. In the fine-tuning step, we use
1%, 5%, and 10% of data to calibrate the model.
Results. The results for stress detection on WESAD is presented
in Table 1. Our model obtains an accuracy of 80.4% and F1 score of
69.7%, which are below the state-of-the-art results. By fine-tuning
the model with only 10% of the test data, the performance is con-
siderably boosted to an accuracy of 91.1%, outperforming other
methods in Table 1. For the SWELL-KW dataset, as can be seen
from Table 1, we achieve an accuracy of 58.1 and F1 score of 58.8
which are comparable to [12]. It should be noted, however, that
[12] uses multi-modal data (facial, posture, computer interactions,
ECG, and EDA) as apposed to our uni-modal approach. Similar to
WESAD, we observe that fine-tuning on only 10% of data results
in a considerable performance boost and an accuracy of 71.6% (see
Table 1). Table 2 shows the performance when different percentages
of test data are used for calibration. As can be seen, in WESAD, we
need to use more than 1% of the data in the fine-tuning step to con-
siderably improve the result. However, for SWELL-KW, calibrating
with even 1% of data boosts the performance to outperform the
baselines. While our approach yields promising results and is end-
to-end (does not require hand-crafted features), the results indicate
that to generalize to unseen subjects better than the state-of-the-
art, it requires calibration with a small amount of data, which is
considered a limitation of our work. Nonetheless, we believe our
method demonstrates the potential for transformer architectures
to be used in the area of affective computing.

4 CONCLUSION
We presented a model based on convolutional and transformer ar-
chitectures for detecting stress versus non-stress using ECG signals.
To test our model, we used two publicly available datasets, WESAD
and SWELL-KW. We showed that our model can achieve competi-
tive results by using transformers with few convolutional layers.
The results using LOSO validation showed that by fine-tuning the
model with only a fraction of the test data (10%), the proposed
model can outperform the baseline methods.
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