
A Neuro-vector-symbolic Architecture for Solving Raven’s Progressive
Matrices

Michael Hersche,1, 2 Mustafa Zeqiri,2 Luca Benini,2 Abu Sebastian,1, a) and Abbas Rahimi1, b)
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Neither deep neural networks nor symbolic AI alone has approached the kind of intelligence expressed in humans.
This is mainly because neural networks are not able to decompose joint representations to obtain distinct objects (the
so-called binding problem), while symbolic AI suffers from exhaustive rule searches, among other problems. These
two problems are still pronounced in neuro-symbolic AI which aims to combine the best of the two paradigms. Here,
we show that the two problems can be addressed with our proposed neuro-vector-symbolic architecture (NVSA) by
exploiting its powerful operators on high-dimensional distributed representations that serve as a common language be-
tween neural networks and symbolic AI. The efficacy of NVSA is demonstrated by solving the Raven’s progressive
matrices datasets. Compared to state-of-the-art deep neural network and neuro-symbolic approaches, end-to-end train-
ing of NVSA achieves a new record of 87.7% average accuracy in RAVEN, and 88.1% in I-RAVEN datasets. Moreover,
compared to the symbolic reasoning within the neuro-symbolic approaches, the probabilistic reasoning of NVSA with
less expensive operations on the distributed representations is two orders of magnitude faster. Our code is available at
https://github.com/IBM/neuro-vector-symbolic-architectures.

Human fluid intelligence is the ability to think and reason abstractly, and make inferences in a novel domain. The Raven’s
progressive matrices (RPM)1 test has been a widely-used assessment of fluid intelligence and abstract reasoning2,3. The RPM
is a non-verbal test which involves perceiving pattern continuation, element abstraction, and finding relations between abstract
elements based on underlying rules. Each RPM test is an analogy problem presented as a 3×3 pictorial matrix of context panels.
Every panel in the matrix is filled with several geometric objects based on a certain rule, except the last panel which is left blank.
The participants are asked to complete the missing panel in the matrix by picking the correct answer from a set of candidate
answer panels that matches the implicit rule (see Methods and Supplementary Fig. 1c). Solving this test mainly involves two
aspects of intelligence: visual perception and abstract reasoning.

How perception is combined with reasoning, and how they interact vary greatly across the spectrum of AI architectures. At
one end of the spectrum, in the deep learning architectures4–12 perception has primacy, and reasoning is more likely to adapt
to the representations than vice versa. At the opposite ends of the spectrum, in the classical symbolic AI, the perceptual repre-
sentations are pre-engineered to e.g., emphasize relations, rather than the representations being generated as a consequence of
the reasoning processes. In fact, it has been argued that the construction of appropriate representations is part of the reasoning
process13. Neuro-symbolic architectures further enrich the spectrum of possibilities by utilizing techniques from both ends: they
combine subsymbolic (e.g., neural network) with symbolic AI approaches, aiming to reach human-level generalization14–17.
Considerable effort has been devoted to integrate the two ends that led to state-of-the-art performance of neuro-symbolic archi-
tectures in various tasks, e.g., visual question answering18–21, causal video reasoning22, and solving RPM23,24. However, the
resulting neuro-symbolic architectures are not immune to the potential problems of their individual ingredients (i.e., the neuro
and symbolic parts), which are explained in the following.

We first explain the binding problem25 in neural networks that refers to their inability to recover distinct objects from their
joint representation. This inability prevents the neural networks from providing an adequate description of real-world objects
or situations that can be represented by hierarchical and nested compositional structures26. When we consider the fully local
representations, an item of any complexity level can be represented by a single unit, e.g., by one-hot code. Such local repre-
sentations limit the number of representable items to the number of available units in the pool, and hence cannot represent the
combinatorial variety of real-world objects. To address this issue, the distributed representations can provide enough capacity to
represent a combinatorially growing number of compositional items. However, they face another issue known as “superposition
catastrophe”27,28. Let us consider four atomic items red, blue, square, and triangle. For representing two composite
objects, e.g., a red square and a blue triangle, the activity patterns corresponding to their atomic items are superim-
posed without increasing the dimensionality. As shown in Fig. 1a, this results in a blend pattern that is ambiguous because the
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patterns of all four atomic items are coactivated, which causes “ghost” or “spurious” memory for unavailable objects such as
red triangle or blue square. As a common practice, to bypass this problem, the neuro-symbolic architectures employ
two complementary networks (e.g., a Mask R-CNN followed by a ResNet-34) to be able to unambiguously extract the item
attributes from multiple objects in an image18–21. The first network (Mask R-CNN) generates segment proposals for all objects
such that each object can be processed individually by another network. Next, the generated bounding box for each single object
paired with the original image is sent to the second network (ResNet-34) for extracting all attributes. However, this approach of
having multiple networks increases the number of weights.

The second ingredient of the neuro-symbolic architectures is the symbolic engine which is used for logical reasoning. For
solving the RPM tests, the symbolic logical reasoning is implemented as a probabilistic abduction reasoning23 that can be viewed
as searching for a solution in a space defined by prior background knowledge. The background knowledge about the rules is
represented in symbolic form by describing all possible rule realizations that could govern the RPM tests2. Then, the reasoning
process can be solved via an exhaustive search over these symbols to abduce the probability distribution of the rules. The
computational complexity of the exhaustive search rapidly increases with the number of objects in the RPM panels. In effect,
this exhaustive search problem hinders the utilization of the symbolic logical reasoning for end-to-end training and real-time
inference.

We aim to address the two aforementioned problems by exploiting vector-symbolic architectures (VSAs)29–33. VSAs are
computational models that rely on high-dimensional distributed vectors and algebraic properties of their powerful operations to
incorporate the advantages of connectionist distributed representations as well as structured symbolic representations (See34,35

for review). In a VSA, all representations—from atomic to composite structures—are high-dimensional holographic vectors of
the same, fixed dimensionality. The VSA representations can be composed, decomposed, probed, and transformed in various
ways using a set of well-defined operations, including binding, unbinding, bundling (i.e., additive superposition), permutations,
inverse permutations, and associative memory (i.e., cleanup). Such characteristics of compositionality and transparency enable
the use of VSAs in analogical reasoning36–40, but these inspiring works do not have any perception module to process the
raw sensory inputs. Instead, they assume there would be a perception system, e.g., a symbolic parser, providing the symbolic
representations that support the reasoning. Further, their inductive logical reasoning has eluded the uncertainty in perception,
and supported only one type of rules in RPM: the progression rule39,40.

Here, we propose a neuro-vector-symbolic architecture (NVSA) in which two powerful machineries, namely, deep neural
networks and VSAs are synergistically combined to codesign a visual perception frontend and a probabilistic reasoning backend.
Hereby, the demands of reasoning can drive the construction of appropriate perceptual representations. This synergy permits both
perception and reasoning ends to tap into the rich resources of VSA as a general computing framework to overcome the problems
of neural binding and exhaustive symbolic search as mentioned above, and yet they can be trained end-to-end. Accordingly, the
main design objective of the NVSA frontend is to transduce the visual raw sensory inputs to the fixed-width VSA representations
(as nested composable structures shown in Fig. 1b). It is achieved by training nonlinear transformations of a neural network as a
flexible means of representation learning over VSA. The resulting NVSA frontend addresses the binding problem in the neural
networks, especially the superposition catastrophe, by effectively mapping the raw image of multiple objects to the structural
VSA representations that still maintain the perceptual uncertainty. These representations can be readily used to solve visual
analogy tasks by directly applying binding operations, or can be used to infer the probability mass functions per individual object
attributes for further reasoning processes in the backend. The NVSA backend maps the inferred probability mass functions into
another vector space of VSA such that the exhaustive probability computations and searches can be substituted by algebraic
operations in that vector space. The design objective of the NVSA backend is to facilitate a differentiable and computationally
efficient probabilistic reasoning process to support a set of RPM rules. The VSA operations offer distributivity and computing-
in-superposition, which significantly reduce the computational costs thus performing probabilistic abduction and execution to
predict the missing RPM panel in a generative and real-time manner.

I. NVSA FRONTEND: PERCEPTION

Prior to describing the NVSA frontend, let us provide a brief background on VSA. VSA is a family of similar systems that
represent data using random high-dimensional vectors (see34 for a review). In this section, we use VSA whose vector entries are
restricted to being dense bipolar30. Initially, one or multiple codebooks are defined as X := {xi}m

i=1, where the elements of each
atomic d-dimensional vector xi ∈ {−1,+1}d are randomly drawn from a Rademacher distribution (i.e., equal chance of elements
being “-1” or “+1”). We compare two vectors using the cosine similarity (sim). The similarity between two atomic vectors is
close to zero with a high probability when d is sufficiently large, typically in the order of thousands33; hence, all vectors in the
codebooks are quasi-orthogonal with respect to each other.

For representing a given data structure, VSA provides a set of well-defined vector operations. Bundling (⊕), superposition, or
addition of two or more atomic vectors is defined as the element-wise sum with a subsequent bipolarization operation that sets
the negative elements to “-1” and the positive ones to “+1”. This operation preserves similarity. On the other hand, binding (�),
or multiplication, of two or more vectors is defined with their element-wise product. Binding yields a vector that is dissimilar
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to its atomic input vectors. Every vector xi ∈ X is its own inverse with respect to the binding operation, i.e., xi � xi = 1,
where 1 is the d-dimensional all 1-vector. Hence, the individual factors in a product can be exactly retrieved by unbinding:
xi� (xi�x j) = (xi�xi)�x j = x j.

The NVSA frontend consists of a trainable neural network and a VSA machinery whose algebra allows construction of ap-
propriate perceptual representations suitable for the cognitive demands. The design of frontend is inspired by the expressiveness
of high-dimensional VSA representations as a common language between the symbolic representation of a set of objects and
their data-driven representations obtained from a neural network. On the one hand, the real-world objects with arbitrary com-
plexities can be symbolically described by VSA, e.g., a scene with multiple objects can be expressed as a hierarchical nested
compositional structure of attributes, objects, and a set of objects—all with fixed-width vector arithmetic as shown in Fig. 1b.
On the other hand, the resulting VSA representations can also serve as an interface to a data-driven neural network whose layers
of transformation are trained accordingly to transduce the raw image of the scene to the VSA representations (see Fig. 2b). This
novel combination merges the data-driven representation of the scene into its descriptive symbolic representation for facilitating
down-stream reasoning tasks, without exploding the representation dimensionality, or facing the superposition catastrophe. In
the following, we describe the steps involved in the NVSA frontend.

A. Defining VSA representations

This first step is to define a dictionary whereby the atomic concepts, their hierarchical compositions, and their relations can
be described using the fixed-width vectors. What these concepts are can be guided by the cognitive demands. For instance, in
solving RPMs, the reasoning process requires the probability mass functions of the object attributes, therefore the dictionary
should be able to provide such appropriate representations by expressing attributes per objects which, in turn, fulfills the rea-
soning demand. The construction of the dictionary can be done by the application of the VSA operations on the VSA-encoded
concepts as explained in the following. Let us consider the object attributes as the atomic concepts. The encoding process
starts by randomly generating a set of codebooks for the attributes of interest, e.g., one codebook for the colors (xred, xblue), and
another codebook for the shapes (xsquare, xtriangle). Each codebook contains as many atomic d-dimensional vectors as there are
attribute values. It therefore provides a symbolic meaning for individual atomic vectors. For describing an object with these two
attributes, a product vector w can be computed by binding two vectors, one drawn from each of the codebooks (see Fig. 1b). For
example, a red square object is represented as w = xred� xsquare. The random construction of the atomic vectors and the
properties of multiplicative binding yield a unique w that is quasi-orthogonal (i.e., dissimilar) to the VSA representations of all
other attributes and their combinations (e.g., xblue� xtriangle, or xblue� xsquare, or xred� xtriangle). This means that the expected
cosine similarity between two different object vectors is approximately zero with a high probability. Therefore, when their VSA
representations are coactivated, it results in minimal interference such that each object can be recovered (see Fig. 1c.)

We have shown how to derive the object vectors from the elementary attribute vectors. In the next level of the hierarchy, we
are interested in an object-centric definition of the scene. Here, we define the scene as the union of the objects. Therefore, a
scene with multiple objects is represented by bundling together their object vectors: s = (xred�xsquare)⊕ (xblue�xtriangle). The
bundling operation creates an equally-weighted superposition of multiple objects, and preserves similarity; hence, the bundled
vector s is similar to both object vectors present in the scene, and dissimilar to other vectors in the system, as shown in Fig. 1c.
This similarity preservation property allows the bundled vector to be solely matched with its constituent object vectors, which
avoids the superposition catastrophe by design (e.g., sim(s,xred� xtriangle) ≈ 0). In summary, VSA can construct higher-level
symbols of multiple objects by combining lower-level symbols of individual objects, and more elementary symbols of object
attributes by using its dimensionality-preserving operators.

Next, we illustrate the generalization of the previous 2-attribute to 4-attribute objects suitable for solving RPM (an RPM test
example is shown in Fig. 2a). Similarly, we randomly generate a set of compact codebooks for the available attributes in the
RAVEN dataset as T := {ti}5

i=1, S := {si}6
i=1, C := {ci}10

i=1, and L := {li}22
i=1 which respectively represent the type, size, color,

and position of a single object, considering the cross-configuration equivalent positions with the same proportions (see Methods
for more details). We set d = 512 that is sufficiently large to supply the atomic quasi-orthogonal vectors for every attribute value,
while it is at least one order of magnitude smaller than the number of all possible combinations of attribute values (m = 6600)
for a single object. Using these four codebooks, a quasi-orthogonal vector for every possible combination of a single object is
computed as the Hadamard product of its attribute vectors (i.e., a 4-way multiplicative binding). These d-dimensional vectors
are stored in a dictionary W ∈ {−1,+1}m×d which contains all m possible single object combinations. An arbitrary set of these
single object vectors can be further composed by the bundling operation to describe e.g., an RPM panel as the union of its distinct
objects.

The dictionary W is generated once, based on the initialization of codebook vectors, and is kept frozen during training.
As the second step of the frontend, in the next subsection, we show how this dictionary can be connected to the data-driven
representations of its objects.
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B. Neural network representation learning over VSA

To avoid the pitfalls of pure symbolic approaches and the need for a symbolic parser, we exploit the deep neural network
representation learning over the defined VSA representations (W) such that an image panel X ∈ Rr×r with resolution r can be
transformed and matched to the corresponding VSA representations using a mapping fθ with learnable parameters θ . To do so,
we propose using a ResNet-18, motivated by its good performance7, and interface its fully connected layer to the dictionary W
as shown in Fig. 2b. With this interface, the last fully connected layer has an output dimension d = 512 to be able to search on W.
We insert a hyperbolic tangent (tanh) activation at the output of ResNet-18 to guide its real-valued output towards the bipolar
representation of W. By exploiting the VSA principles, the ResNet-18 can learn to superpose multiple, say k, objects in the
d-dimensional vector from which all the attributes of the compound objects can be reliably recovered by W without facing the
superposition catastrophe. Alternatively, other neuro-symbolic architectures18–21 require at least two separate neural networks
that collectively increase the number of trainable parameters by ≈ 6× compared to our NVSA frontend.

The NVSA frontend and backend can be trained end-to-end as we show in the next section. However, in a fully supervised
setting in which the labels of the visual attributes are given, the NVSA frontend can be trained independent of the backend. Let
w1,w2, ...,wm be the quasi-orthogonal representations of the object classes within W, where m is the number of single-object
combinations. For an image panel X containing k objects, with k target indices {yi}k

i=1, the trainable parameters θ of ResNet-18
can be optimized. The optimization maximizes the similarity between the output query q = fθ (X) of ResNet-18 and the bundled
vector wy1⊕ ...⊕wyk using a novel additive cross-entropy loss together with batched gradient descent. We provide the details of
this loss, and show its superiority compared to other loss functions and perception methods (see Supplementary Note 1a).

We also analyze the generalization of the NVSA frontend to unseen combinations of attribute values in a novel object. Al-
though we observe that the frontend with the multiplicative binding cannot generalize to unseen combinations of the attribute
values, we enhance it by a multiplicative-additive encoding that can generalize up to 72% (see Supplementary Note 1b). The
multiplicative binding-based encoding however generalizes well to unseen combinations of multiple objects (see Supplementary
Note 1c). Importantly, the employed multiplicative encoding results in learning the powerful perceptual representations in readi-
ness for solving high-level reasoning tasks, such as visual analogy. We have shown that the predicted perceptual representations
at the output of ResNet-18 can be directly manipulated by the binding operations to solve visual analogy tasks (A : B :: α : β ).
In the studied task, we consider a source domain that shares one relation, or multiple relations, between its two sets of objects
(A : B), and a target domain that shares the same relation(s) between its object sets (α : β ). Binding the neural network repre-
sentations obtained from the source domain allows to capture the relation(s) solely from a single example, that can be applied to
novel circumstances in the target domain by another application of binding operation. See Supplementary Note 2.

C. Inferring probability mass functions from data-driven VSA representations

We describe the last step of the frontend here. Given an RPM panel, the ResNet-18 generates a VSA query vector that can be
decomposed into the constituent object vectors, each derived from a unique combination of the attributes. The decomposition
performs a matrix-vector multiplication between the normalized dictionary matrix W and the normalized query vector, q, to
obtain the cosine similarity scores z. Since the structure of the dictionary matrix is known, we can infer the attributes namely,
position, color, size, and type from the detected indices. Based on the similarity scores, we derive the probability mass functions
(PMFs) for every object attribute, which include vtype, vsize, and vcolor by marginalizing all non-negative similarity scores over
all attribute combinations and a consecutive scaled softmax activation per object attribute. In addition, we derive the probability
of whether an object is present at a given position in vexist . After inferring these PMFs of the object attributes, we infer the PMFs
of the panel attributes. We combine all object PMFs to five PMFs which represent the position, number, type, size, and color
distribution of the entire panel. These PMFs are denoted by P := (ppos,pnum,ptype,psize,pcolor). See Methods for more details.

Given an RPM test, we obtain a set of PMFs P(i, j) for each of the eight context panels, indexed by their row i and column j,
and a set of PMFs P(i) for each of the answer panels, as shown in Fig. 2c. The set of context PMFs (P(i, j)) form the probabilistic
scene representations that are further transformed in the backend whose objective is to find the underlying rule. The chosen rule
is executed to generate P̂(3,3) for the missing panel.

II. NVSA BACKEND: REASONING

Here, we describe the NVSA backend that provides a computationally-efficient, differentiable, and transparent implementa-
tion of the probabilistic abductive reasoning. The NVSA backend re-designs reasoning by exploiting the VSA representations
and operators that permit handling large problem sizes that cannot be solved by traditional symbolic search-based reasoning
approaches. As the first step in the NVSA backend, the inferred PMFs from the frontend are transformed into the distributed
VSA representations in an appropriate vector space. Next, this vector space should allow the application of VSA operators to
implement the first-order logical rules such as addition of the attribute values, or subtraction, distribution, and more (see Fig. 3a).
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The efficient VSA manipulations result in computing the rule probability for each possible rule, from which the most probable
rule can be chosen and executed. These two main steps in the backend, followed by the end-to-end training of frontend and
backend are described in the following subsections.

A. VSA representations of probability mass functions

The RAVEN dataset7 applies an individual rule to each of the five attributes (position, number, color, size, and type), which
is either constant, progression, arithmetic, or distribute three (see Methods). The rules are applied row-
wise across the context matrix. Based on the downstream rule, each attribute can be treated as continuous where there are
relations among its set of values, or discrete where there are no explicit relations between the values. For instance, the color
attribute is treated as discrete in the distribute three rule, while the arithmetic rule treats it as continuous. To make
our VSA transformation general, we treat every attribute as both discrete and continuous, and it is up to the rule to use the
proper representation. To achieve this in NVSA backend, we switch from the previously used bipolar dense representations to
binary sparse block codes41,42. This VSA framework with the help of fractional power encoding32 permits the representation
of continuous PMFs. The basis vectors in the binary sparse block codes are d-dimensional, binary-valued vectors with κ non-
zero elements. More specifically, the vectors are divided in κ distinct blocks which contain exactly one non-zero element. The
binding in the binary sparse block codes is defined as the block-wise circular convolution; similarly, the unbinding is the block-
wise circular correlation. The similarity of two vectors is the sum the inner product normalized by the number of blocks κ . The
bundling of two or more vectors is computed via the element-wise addition. Optionally, the bundled vector could be sparsified to
have only one non-zero element per block again, however, this results in loss of information. Hence, in this work, the bundling
is performed without sparsification.

In the following, we illustrate how a PMF can be transformed to this VSA format. To represent the PMF of an attribute in the
VSA space, we first generate a codebook B := {bi}n

i=1, where bi ∈ {0,1}d . For a discrete attribute, we use a codebook with n
unrelated basis vectors bi. For representing the PMF of a continuous attribute, we use a codebook with basis vectors generated
by the fractional power encoding32, where the basis vector corresponding to an attribute value v is defined by exponentiation of
a randomly chosen basis vector e using the value as the exponent, i.e., bv = ev. See Methods on how to create the codebooks
for discrete and continuous attributes. Each PMF is represented through the weighted superposition with the values in the PMF
used as weights and the corresponding codewords as basis vectors (see Fig. 3a):

a(i, j) := g(p(i, j)) =
n

∑
k=1

p(i, j)[k] ·bk, (1)

Every attribute PMF is transformed separately to its corresponding VSA representation, e.g., the PMF of the attribute number is
transformed to a(i, j)num := g(p(i, j)

num).

B. VSA-based probabilistic abduction and execution

The attribute PMFs of the panel are mapped to the VSA format where we can use the VSA algebra to implement the functions
embedded in the underlying rules. Let us consider the arithmetic plus rule for the number attribute, which is treated as
continuous and shown in Fig. 3b. In each row, the number of objects in the third panel is the sum of the number of objects in
the first two panels. As this rule is of continuous nature, we represent the PMFs using fractional power encoding. The VSA
representations of PMFs obtained in equation (1) are bound to compute ri vectors for the first and second row using the first two
panels:

r+i = a(i,1)�a(i,2), i ∈ {1,2}. (2)

To better understand equation (2), let us assume that the distribution of the PMFs of the context panels is maximally compact,
i.e., the values in p(i, j)

num are “1” at the correct number of objects and “0” elsewhere. Then, the bound vector of the first row can
be formulated as r+1 = ev1 � ev2 = ev1+v2 , where v1 and v2 are the numbers of objects in the first and second panel. If the rule
applies, i.e. v3 = v1 + v2, we expect the bound vector r+1 to be identical to the VSA representation of the last panel in the row
a(1,3) = ev3 = ev1+v2 , thanks to the properties of fractional power encoding.

For supporting arbitrary PMFs, we validate the rule using the similarity between the bound vectors. Combining the row-wise
similarities with additional constraints yields us an estimation of the rule probability:

u[arithmetic plus] = sim(r+1 ,a
(1,3)) · sim(r+2 ,a

(2,3)) ·ha(a(3,1),a(3,2)), (3)
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where ha is an additional rule-dependent constraint (see Supplementary Note 3). When the rule probability for the arithmetic
plus is the highest among all possible rules, we estimate the vectorized representation of the number attribute for the missing
panel by

â(3,3) = a(3,1)�a(3,2). (4)

This bound vector represents the estimation of the PMF. If the PMFs in the last row are maximally compact, the bound vector
corresponds to the correct number of objects of the missing panel. Otherwise, the bound vector represents a superposition of
the correct number vector and additional terms which can be considered as noise terms, stemming from the smaller non-zero
contributions in the PMF.

To compute the PMF of the missing panel attribute, we do an associative memory search between the bound vector and all
atomic vectors in the codebook B, followed by a normalization:

p̂(3,3)
num = norm

([
sim
(

â(3,3),b1

)
,sim

(
â(3,3),b2

)
, ...,sim

(
â(3,3),bn

)])
. (5)

Next, we show how the NVSA backend supports the rules with the discrete treatment of the attributes such as the distribute
three rule. Without loss of generality, we explain our method for the position attribute in the panel constellation with a 3x3
grid (see Fig. 3c). The position is described with a 9-bit code where a “1” indicates that the position is occupied inside the 3x3
grid. This 9-bit position index p takes values from 1 to n= 511, considering the constraint of having at least one object per panel.
A different value of the position attribute (from 1 to n) appears in each of the three panels of a row. The distribute three
requires that the same values appear in each row with a distinct permutation. The same holds with respect to the columns.

We transform the position PMF of every panel using equation (1) in combination with a discrete codebook B. These VSA
representations are used to compute the product vectors for the first and second rows and columns of the context matrix:

ri = a(i,1)�a(i,2)�a(i,3), (6)

c j = a(1, j)�a(2, j)�a(3, j), i, j ∈ {1,2}. (7)

Equations (6) and (7) describe a VSA-based conjunctive formula grounded over the row and column being considered, respec-
tively. For example, given a set of arbitrary PMFs in a row, the resulting product vector (r1 or r2) is unique. However, for any
order of PMFs in the row, the computed product vectors are the same due to the commutative property of the binding operation.
We exploit this property to detect whether the distribute three rule applies by simply checking if the product vectors
are similar among rows and columns, i.e., sim(r1,r2)� 0 and sim(c1,c2)� 0, and combine them together to estimate the rule
probability

u[distribute three] = sim(r1,r2) · sim(c1,c2) ·hd(a(1,1),a(2,1), ...,a(2,3)), (8)

where hd is an additional rule-dependent constraint (see Supplementary Note 3). To execute the rule, we first unbind two vectors
(a(3,1) and a(3,2)) from one of the row product vectors (r1 or r2), which results in an unbound vector â(3,3). The PMF p̂(3,3)

pos of
the missing panel is estimated by the associate memory in equation (5) which searches on the values of the position attribute.

The associative memory search is only limited to the n atomic vectors in the codebook B; hence, our NVSA backend requires
O(n) in time and space. This is a significant reduction compared to pure symbolic search-based reasoning approaches which
search exhaustively through all possible rule implementations that demanding up to O(n3) in time and space. For example,
the previously described distribute three rule on the attribute position would have

(n=511
3

)
· 12 ≥ 26 · 107 different rule

implementations in the 3x3 grid constellation which is prohibitive to compute. This exhaustive rule search forces the neuro-
symbolic approach in23 to considerably limit its search space at the cost of lower accuracy. Instead, our approach efficiently
covers the entire search space by simple binding and unbinding operations on the VSA representations followed by a linear
associative memory search whose time and space complexity is set as the cube root of the exhaustive search space. This
computational advantage of VSA is mainly due to performing search-in-superposition. For example, by comparing the VSA
representations of the first and second row, we can sum over all possible combinations in superposition:

sim(r1,r2) = sim(a(1,1)�a(1,2)�a(1,3),a(2,1)�a(2,2)�a(2,3)) (9)

= sim

((
n

∑
k=1

p(1,1)[k] ·bk

)
�

(
n

∑
k=1

p(1,2)[k] ·bk

)
�

(
n

∑
k=1

p(1,3)[k] ·bk

)
,a(2,1)�a(2,2)�a(2,3)

)
. (10)

Without the VSA representations, one would need to compute the maximally expanded version. See Supplementary Note 3 for
details about our implementation of the artihmetic minus, the progression, and the constant rule.
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C. End-to-end training

We train our NVSA frontend and backend end-to-end. Note that only the neural part of the frontend (i.e., ResNet-18) has
trainable parameters, while the dictionary (W) and all the parameters in the backend (e.g., rule representations) are frozen.
Every training RPM example provides eight context panels (X(1,1), ...,X(3,2)), eight candidate answer panels (X(1), ...,X(8)), the
ground-truth answer y, and the ground-truth rule per attribute r. First, we pass the context panels through the NVSA frontend
and infer P(i, j); similarly, we infer P(i) for the candidate answer panels. Using P(i, j), we compute the rule belief per attribute
using the NVSA backend (e.g., using equations (3) and (8) for arithmetic plus and distribute three). Based on
the distribution of the rule beliefs, we then sample an action per attribute and execute it, yielding five probability distributions
for the attributes P̂(3,3). Finally, we compute for each candidate answer panel j, the Jensen–Shannon divergence (JSD) between
each of the five probability distributions in P(k) and P̂(3,3), and sum the five JSD values to obtain a score for the answer panel j.

Inspired by PrAE23, we mutually minimize a loss based on REINFORCE43 and an additional auxiliary loss. The REINFORCE-
based loss combines the negative cross-entropy on the scores, interpreted as a reward function, with the log-likelihood of the
sampled action. The auxiliary loss sums up the negative log-likelihood of the ground-truth rules (See Methods). Hence, by
minimizing the auxiliary loss, we train the frontend to map the context panels to the PMFs based on which the rule detection
yields the correct rule.

III. RESULTS

We evaluate NVSA on the RAVEN7, I-RAVEN8, and PGM4 datasets (see Methods). First, we consider more diverse RAVEN
and I-RAVEN datasets. Fig. 4 compares the classification accuracy with the state-of-the-art models in pure deep neural networks
(SCL44) and neuro-symbolic AI (PrAE23), where we have retrained both models five times using different random seeds and
used the checkpoint with the highest accuracy on the validation set. A separate SCL model was trained per constellation. On the
RAVEN dataset, NVSA achieves an average accuracy of 87.7%, outperforming SCL by 0.5% and PrAE by 27.4%.

There is a short-cut solution in the answer panels of the RAVEN dataset (see Methods). It has been shown that the shortcut
pattern can be leveraged by deep neural networks, e.g., CoPINet6 achieved a higher accuracy when being trained and tested
exclusively on the answer panels without considering the context panels at all (context-blind)8. In this regard, the understanding
of the context matrix and its underlying rules is bypassed by shortcut learning from the answer set only. Therefore, it is recom-
mended to use the I-RAVEN dataset8, which provides unbiased fair answer panels, when testing RPM reasoning models45,46.
NVSA achieves the highest accuracy on the I-RAVEN dataset too (88.1%) on average, while the majority of deep learning ap-
proaches4–7,47 face a large accuracy drop by showing < 50% accuracy on average. Our NVSA does not face any accuracy drop
by switching from RAVEN to I-RAVEN because it cannot rely on such a shortcut by design: based on the highest probable rules,
it first makes a prediction of the PMFs of the empty panel before individually comparing it to each PMF of the answer panel.
The controllability and explainability of NVSA is a great advantage for problems that require it. NVSA also significantly out-
performs SCL by 4.2% and PrAE by 17.0% on I-RAVEN, on average. Extended Tables II and III present a detailed comparison
with the state-of-the-art methods in the tabular format.

Next, we compare the accuracy and the compute time of the NVSA backend with the PrAE reasoning backend by providing
the ground-truth attribute values. As shown in Table I, the PrAE reasoning backend reaches relatively lower accuracies (94.21%–
95.68%) in the 2x2 grid, the 3x3 grid, and the out-in grid compared to the other constellations. We identify the root cause of the
low accuracy in these three constellations to be the approximations made in the exhaustive search by applying restrictions to get
faster execution. We remove these search restrictions from PrAE and create an unrestricted PrAE. This increases the accuracy
of those three constellations to 97.5%–99.22%. While the compute time of the unrestricted PrAE remains similar for most
configurations, it increases rapidly for the 3x3 grid, requiring 15,408 minutes (10.7 days) instead of the previous 648 minutes
(10.8 hours) in the PrAE with restricted search for solving 2000 RPM tests. Note that we run the experiments on the CPUs as
the unrestricted PrAE demands more than 53 GB memory that could not fit the GPU providing 32 GB memory (see Methods).
However, our NVSA reasoning backend effectively resolves this bottleneck: it reduces the computation time on the 3x3 grid to
63.2 minutes, which is 244× faster than the unrestricted PrAE, and the memory demand to < 10 GB, while maintaining the high
accuracy (96.89% vs. 97.50%). Moreover, we demonstrate that frontend and backend of our NVSA can be trained end-to-end,
practically in any constellations, and it provides real-time inference for solving the RPM tests (see Supplementary Video).

Moreover, we also evaluate NVSA on the PGM dataset4, being the first neuro-symbolic approach targeting this dataset, while
other neuro-symbolic works23,24 only targeted RAVEN/I-RAVEN dataset. NVSA achieves an average accuracy of 68.3% and is
highly competitive with the reproduced state-of-the-art MRNet. See Supplementary Note 5 for more details.

Lastly, we showcase the out-of-distribution generalizability of our NVSA with respect to unseen attribute-rule pairs in the
I-RAVEN dataset. More specifically, we evaluate whether our model is able to solve tasks containing an unseen target attribute-
rule pair (e.g., the constant rule on the type attribute) when it has been trained on the examples containing all of the attribute-rule
pairs except the specific target one (e.g., the constant rule on size and color, the progression rule on all attributes, and the
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distribute rule on all attributes). Our NVSA outperforms the baselines (LEN5 and CoPINet6) by a large margin in all unseen
attribute-rule pairs (See Supplementary Note 4).

IV. DISCUSSION

The NVSA frontend allows expression of many more object combinations than the dimensions in the vector space. However, it
requires to store and search on the dictionary W. Given the quasi-orthogonality of the representations in W, it can be substituted
with a set of smaller codebooks by potentially exploiting the VSA operators in a nonlinear dynamical system. A powerful
example of this would be the resonator networks48,49 and their stochastic nonlinear variants50 that can quickly factorize a product
vector in an iterative manner thus reducing the computation/storage demand on the dictionary when decomposing an object
vector.

The associative memory search is the central ingredient of NVSA in both perception and reasoning for estimating the PMFs.
To reduce the computational complexity of the associative memory, one notable option is to use in-memory computing that
executes searches in an analog manner. It has recently been shown that the associative memory can be realized by analog in-
memory computing based on crossbar arrays of emerging non-volatile memories51–54. Besides improving the computational
density and energy efficiency, this paves the way for reducing the timing complexity of the associative memory to O(1). Other
frequent primitives such as binding and bundling can also benefit from low-power hardware realization55.

By accurately and efficiently solving RPM tests, we have demonstrated that NVSA enhances the aspects of both perception and
reasoning by adding a distinctive vectorized flavor to them which is based on the high-dimensional distributed representations
and operators of VSA. In the proposed NVSA frontend, instead of naive local or distributed representations for the objects, we
exploited high-dimensional VSA representations. A multi-attribute meaning was structurally assigned to every object vector by
binding its attribute vectors, which can be further bundled to create a composite vector representing multiple objects—all in a
fixed dimension that is significantly lower than the combinatorial attributes. These structured representations were used as the
target vectors to train the deep neural network. The training can be done end-to-end, or by using the additive cross-entropy
loss when the attribute labels are available. Being able to train this deep transformation permitted the simultaneous inference of
multiple attributes of multiple objects in a visual scene with neither exploding the representation dimensionality, nor facing the
superposition catastrophe. In the NVSA backend, we proposed a computationally-efficient and differentiable reasoning where
the probability mass functions of discrete or continuous attributes are expressed as the VSA representations. This permitted the
use of VSA operators to efficiently implement the rules which save the computational cost significantly thanks to the distributivity
and computing-in-superposition of VSA. As a result, the time/space computational complexity of the distribute three
rule search was reduced from O(n3) to O(n), leading to two orders of magnitude shorter execution time. It was shown that
NVSA surpasses both pure deep learning10 and neuro-symbolic23 state-of-the-arts by achieving average accuracy of 87.7% in
the RAVEN7 and 88.1% in the I-RAVEN8 datasets. NVSA also enabled real-time execution on CPUs, which is 244× faster than
the functionally-equivalent symbolic logical reasoning.

NVSA is a significant step towards encapsulating different AI paradigms in a unified framework to address task involving
both perception and higher-level reasoning.
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METHODS

RAVEN and I-RAVEN dataset containing RPM tests

The RAVEN dataset7 contains a rich set of RPM tests. Every RPM test consists of an incomplete 3×3 matrix of context panels,
and eight candidate answer panels. The goal of solving an RPM test is to understand the row-wise underlining rule set, and then
to decide which of the candidate panels is the most appropriate choice to complete the matrix. An example of RPM test can be
seen in Supplementary Fig. 1. The RAVEN dataset arranges the RPM tests in seven different constellations, namely center, 2x2
grid, 3x3 grid, left-right, up-down, out-in center, and out-in grid which are shown in Supplementary Fig. 1. The panels have a
resolution of r× r = 160×160. The dataset provides 10,000 samples for every constellation, which are divided into six training
folds, two validation folds, and two testing folds.

The objects inside the panels have the following attributes: number, position, type, size, and color. RAVEN distinguishes
between five different types (triangle, square, pentagon, hexagon, and circle), six sizes (enumerated from 1–6), and ten colors
in the form of shadings (enumerated from 1–10). The number of objects present in the panel varies from one to the maximum
number of possible objects, which is determined by the constellation, e.g., the 2x2 grid contains maximally four objects. The
position attribute describes the occupancy of the objects inside the panel. Its range is constellation-dependent too; e.g., the 2x2
grid has 15 different position constellations. Nine panels are arranged to a 3x3 matrix such that one out of the following four
rules applies to each attribute in a row-wise manner. The four types of rules can be summarized as:

• Constant: The attribute value does not change per row.

• Progression: The attribute value monotonically increases or decreases in a row by a value of 1 or 2.

• Arithmetic: The attribute values of the first two panels are either added or subtracted, yielding the attribute value of
the third panel in the row.

• Distribute three: This rule involves the fact that three different values of an attribute appear in the three panels of
every row (with distinct permutations of the values in different rows). The same holds with respect to the columns.

Supplementary Fig. 1 shows an example for each rule governing the position attribute or the number attribute.
The answer choices in the RAVEN dataset are generated in a way such that only one randomly chosen attribute value differs

from the correct answer. Consequently, by exploiting this shortcut solution, the correct answer can be found by simply consider-
ing the mode of attribute values in the answer set without looking at the context panels, which is considered as unfair8,10. To this
end, the impartial RAVEN (I-RAVEN8) provides an alternative answer set, which is generated with an attribute bisection tree
ensuring that the modifications of attribute values are well balanced without any detectable pattern. It is therefore recommended
to use the unbiased I-RAVEN when testing RPM reasoning models45,46.

PMF computation for object attributes and panel attributes

Every panel is represented with the attribute PMFs describing the distribution of the attribute values inside the panel. First,
the object PMFs are determined using marginalization with a consecutive softmax activation. The marginalization computes
the sum of non-negative cosine similarities between the query and each valid attribute value combination. For example, for the
attribute type with value j at location k, we determine the sum by

v′(k)type[ j] = ∑
s∈{1,...,6}

c∈{1,...,10}

ReLU(sim(q, lk� t j� ss� cc)) , (11)

where ReLU(·) is the rectified linear unit activation. Similarly, the sum is computed for the object PMF of attribute color and
size. For marginalizing for object existence (v′kexist [0]), we sum over all the attribute value combinations, whereas the value of
no existence is given by the cosine similarity between the query and the vector (fk) which indicates that no object is present at
position k:

v′(k)exist [0] = ∑
t∈{1,...,5}
s∈{1,...,6}

c∈{1,...,10}

sim(q, lk� tt � ss� cc) (12)

v′(k)exist [1] = sim(q, fk). (13)
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In this case, we marginalize over all cosine similarities (i.e., no ReLU activation is applied) as the v′(k)exist [1] would be 0 with high
probability at the beginning of training, rendering the end-to-end training infeasible. Finally, for generating a valid object PMF
which sums up to one, we apply a scaled softmax non-linearity on the sum vector. More precisely, for each attribute a as either
type, color, size, or exist, and the panel position k, we compute

v(k)a = softmax(sm ·v′(k)a ), (14)

where sm is a trainable, inverse softmax temperature.
Next, the PMFs of the different objects are combined to five PMFs representing the attributes of the panel. The constellation

is known to the reasoning backend; hence, the dimensions of the PMFs that depend on the constellations (i.e., position, number)
are known, too. The position PMF represents the probability of object occupancy inside a panel. An occupancy p is described
with the set Ip containing the occupied positions, e.g., I1 = {1} represents the case where only the first object is occupied, and
I511 = {1,2,3, ...,9} the case where all objects are occupied in a 3x3 grid. The position PMF is derived by

ppos[ j] = ∏
k∈I j

v(k)exist [0] ∏
k′∈{1,...,9}\I j

v(k
′)

exist [1]. (15)

For the attribute number, the PMF is derived from the position PMF with

pnum[ j] =
npos

∑
k=1

s.t. j=|Ik|

ppos[k], (16)

where |Ik| represents the number of occupied positions in the set Ik. For the attributes type, size, and color, the PMFs are
determined by combining the position PMF with the corresponding attribute PMFs. For example, the PMF for the attribute type
is determined by

ptype[ j] =
npos

∑
i=1

ppos[i]∏
k∈Ii

v(k)type[ j]. (17)

In some RPM tests, the values of some attributes inside a panel can be different, e.g., the types are different. We represent this
case with an inconsistency state for the attributes type, size, and color, by extending the PMF with an additional probability, e.g.,
for the attribute type

ptype[ntype +1] = 1−
ntype

∑
j=1

ptype[ j]. (18)

PMF transformation of discrete and continuous attributes to VSA

The PMF of a discrete attribute is represented with a vector space which is spanned with unrelated basis vectors B := {bi}n
i=1.

Each basis vector bi ∈ {0,1}d is a d-dimensional κ-sparse binary vector, where the vector is divided in κ blocks each containing
one non-zero element whose index drawn from a uniform distribution. For representing the PMF of a continuous attribute, we
use a vector space which is spanned with a basis taken from the fractional power encoding32. Building the basis of the fractional
power encoding begins with randomly initializing one single unitary basis vector e ∈ {0,1}d . The basis vector corresponding to
any arbitrary attribute value v is defined by exponentiation of the basis vector e using the value as the exponent. For example, the
basis vector corresponding to the value “3” is e3 = e� e� e. For representing real values v ∈ R, the corresponding basis vector
can be computed in the block-wise Fourier domain, where the final basis vectors can contain more than κ non-zero elements42.
In RPMs, however, we exclusively encounter attributes with the integer values, e.g., the size attribute of an object is enumerated
from 1 to n = 6. Thus, the underlying codebook is κ-sparse, of finite size, and defined as B := {ei}n

i=1. Using this codebook, a
PMF of a given continuous attribute is then transformed to the VSA representation using the weighed superposition defined in
equation (1).

End-to-end training

In the following, we give a detailed description of the end-to-end training of NVSA. We are given a training RPM task
containing the panels X (8 context and 8 answer panels), the panel index of the ground-truth answer ytask, and the ground-truth
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rule yrule. Here, we describe the updates of the frontend trainable parameters θ for one attribute, the generalization to all the
rules is straightforward. The operation of NVSA results in the PMF estimation of the rule u, the sampled rule ũ, and the scores s
derived from the negative JSD. Based on the scores, we compute the categorical cross-entropy loss l(X,ytask). Similar to PrAE23,
we update the trainable parameters θ using the following gradient update

θ ← θ −β (∇θ l(X,ytask)+ l(X,ytask)∇θ log(u[ũ])−∇θ log(u[yrule])) , (19)

where β is the learning rate. The first update term minimizes the cross-entropy loss, where the second term, based on REIN-
FORCE, operates on the sampled action log probability. Finally, the third auxiliary term operates on the log probability of the
ground-truth rule in order to improve the rule detection.

Experimental Setup

We evaluate different methods on the RAVEN7 and the I-RAVEN8 datasets. Our NVSA is exclusively trained on the training
data from RAVEN while being tested on both RAVEN and I-RAVEN. I-RAVEN provides the unbiased answer panels, while
the constellations and the context matrices stay the same as in RAVEN. In our experiments, in the NVSA frontend we set the
dimension of the bipolar vectors to d=512, while in the NVSA backend we set the dimension of the binary sparse block codes
to d=1024 and κ=4.

We train a separate NVSA, consisting of the frontend (i.e., a trainable ResNet-18 with the frozen W) and the backend, per
constellation. Motivated by11, the ResNet-18 was pre-trained on the ILSVRC2012 ImageNet-1k dataset. We also adapted
ResNet18’s first convolutional block by reducing its stride from 2 to 1 and removing the maxpooling, which improved the
overall accuracy by 2.9% and 2% on RAVEN and I-RAVEN, respectively. The training was performed for 150 epochs using
the Adam optimizer with a weight decay of 1e-4 and a constant learning rate of 9.5e-5. All the training hyperparameters are
determined based on the end-to-end reasoning performance on the validation set of RAVEN. We searched through possible batch
sizes {4,8,16,32}. For the training on the majority of the constellations the hyperparameter search yielded an optimal batchsize
of 16. As an only exception, the 3x3 grid constellation had to be trained with batchsize of 8 due to the large space requirements.

The models are implemented in PyTorch (version 1.4.0) and trained and validated on a Linux using an NVIDIA Tesla V100
GPU with 32 GB memory. We repeat all experiments five times with a different random seed and report the average results and
standard deviation to account for training variability.
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45Małkiński, Mikołaj and Mańdziuk, Jacek. Deep learning methods for abstract visual reasoning: A survey on raven’s progressive matrices. arXiv preprint

arXiv:2201.12382 (2022).
46Mitchell, M. Abstraction and analogy-making in artificial intelligence. Annals of the New York Academy of Sciences 1505, 79–101 (2021).
47Zhuo, T. & Kankanhalli, M. Effective abstract reasoning with dual-contrast network. In International Conference on Learning Representations (ICLR) (2021).
48Frady, E. P., Kent, S. J., Olshausen, B. A. & Sommer, F. T. Resonator networks, 1: An efficient solution for factoring high-dimensional, distributed represen-

tations of data structures. Neural Computation 32, 2311–2331 (2020).
49Kent, S. J., Frady, E. P., Sommer, F. T. & Olshausen, B. A. Resonator networks, 2: Factorization performance and capacity compared to optimization-based

methods. Neural Computation 32, 2332–2388 (2020).
50Langenegger, J. et al. In-memory factorization of holographic perceptual representations. arXiv preprint arXiv:2211.05052 (2022).
51Karunaratne, G. et al. In-memory hyperdimensional computing. Nature Electronics 3, 327–337 (2020).
52Karunaratne, G. et al. Robust high-dimensional memory-augmented neural networks. Nature Communications 12 (2021).
53Lin, H. et al. Implementation of highly reliable and energy efficient in-memory hamming distance computations in 1 kb 1-transistor-1-memristor arrays.

Advanced Materials Technologies 6 (2021).
54Li, H. et al. Memristive crossbar arrays for storage and computing applications. Advanced Intelligent Systems 3 (2021).
55Serb, A., Kobyzev, I., Wang, J. & Prodromakis, T. A semi-holographic hyperdimensional representation system for hardware-friendly cognitive computing.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2020).
56Johnson, J. et al. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (2017).
57Mettes, P., van der Pol, E. & Snoek, C. Hyperspherical prototype networks. In Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019).
58Barrett, D., Hill, F., Santoro, A., Morcos, A. & Lillicrap, T. Measuring abstract reasoning in neural networks. In International Conference on Machine

Learning, 511–520 (PMLR, 2018).

ACKNOWLEDGEMENTS

This work is supported by the Swiss National Science foundation (SNF), grant 200800. The authors would like to thank
Salmane El Messoussi for helping with the generalization experiments, Ross W Gayler for insightful comments that contributed



13

to the final shape of the manuscript, and Linda Rudin for the careful proofreading. We would also like to thank Alexander Gray,
Lior Horesh, Kenneth Clarkson, Ismail Yunus Akhalwaya, Maxence Ernoult for fruitful discussions, and Chid Apte and Robert
Haas for managerial support.



1412

red blue square triangle

(a) Localist distributed representation

xsquare xtriangle

wredsquare wblue triangle

(b) High-dimensional VSA representations and operators

xred xblue

s

s

wb. tr.

wr.sq.

xtriangle

xsquare

xblue

xred

xred xblue xsquare xtriangle wr.sq. wb. tr. s

(c) Absolute pairwise cosine similarity between VSA representations

0.0

Input

Representation

Mapping

red blue square triangle red blue square triangle

Input

Representation of
multiple objects

Representation
of objects

1.0

wr. tr.

wb.sq.

wr. tr. wb.sq.Representation
of attributes

Mapping Mapping

Mapping Mapping Mapping

Legend

red triangle (r. tr.)
blue triangle (b. tr.)
red square (r. sq.)
blue square (b. sq.)

FIG. 1: Illustration of the binding problem in the neural networks and our solution. (a) A localist distributed
representation is used for objects with the color and shape attributes. The color attribute is mapped locally on a group of two

neurons (red vs. blue). The shape attribute is similarly mapped to square vs. triangle neurons using a trainable
mapping. This results in two distinct activated patterns for a red square and a blue triangle. If one of these objects

are presented, the responses of the output neurons are sufficient to determine the identity of the object (i.e., its color and shape).
However, when both objects are presented, their elementary patterns (symbols) are simultaneously activated that leads to

binding ambiguity meaning that the resulting blend activity is insufficient to determine which object is in which color. This is
often referred to as the superposition catastrophe28. (b) The high-dimensional distributed VSA representations and operators

can address this problem when properly combined with a neural network as the trainable mapping function. At the lowest level
of the hierarchy, the four attribute values are represented by randomly drawing four d-dimensional vectors (xred, ...). The

vectors are dense binary, and arranged as d “ 10ˆ10 for the sake of visual illustration. At the next level, the red square
object is described as a fixed-width product vector by binding two corresponding vectors (xreddxsquare) whose similarity is

nearly zero to all attribute vectors and other possible product vectors such as xbluedxtriangle, xreddxtriangle, etc. as shown in (c).
This quasi-orthogonality allows the VSA representations to be co-activated with minimal interference. At the highest level, the
two object vectors are bundled together by similarity-preserving bundling to describe the scene. The bundled vector is similar

solely to those objects vectors and dissimilar to others.
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neurons (red vs. blue). The shape attribute is similarly mapped to square vs. triangle neurons using a trainable
mapping. This results in two distinct activated patterns for a red square and a blue triangle. If one of these objects

are presented, the responses of the output neurons are sufficient to determine the identity of the object (i.e., its color and shape).
However, when both objects are presented, their elementary patterns (symbols) are simultaneously activated that leads to

binding ambiguity meaning that the resulting blend activity is insufficient to determine which object is in which color. This is
often referred to as the superposition catastrophe28. (b) The high-dimensional distributed VSA representations and operators

can address this problem when properly combined with a neural network as the trainable mapping function. At the lowest level
of the hierarchy, the four attribute values are represented by randomly drawing four d-dimensional vectors (xred, ...). The

vectors are dense binary, and arranged as d = 10×10 for the sake of visual illustration. At the next level, the red square
object is described as a fixed-width product vector by binding two corresponding vectors (xred�xsquare) whose similarity is

nearly zero to all attribute vectors and other possible product vectors such as xblue�xtriangle, xred�xtriangle, etc. as shown in (c).
This quasi-orthogonality allows the VSA representations to be co-activated with minimal interference. At the highest level, the
two object vectors are bundled together by similarity-preserving bundling to describe the scene. The bundled vector is similar

solely to those objects vectors and dissimilar to others.
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FIG. 2: Proposed neuro-vector-symbolic architecture (NVSA). (a) An example of RPM test taken from the RAVEN dataset
that can be solved by NVSA. The context panels are composed of eight panels followed by a missing panel at (3,3). The

candidate panels provide the potential candidates for the missing context panel. The correct answer is the 6th panel. (b) NVSA
frontend for perception. The frontend uses a trainable neural network (ResNet-18) and a frozen dictionary W that is generated

by the four codebooks of d-dimensional vectors to cover all possible objects (w1,w2, ...,wm, where d ! m in the RAVEN
dataset). The last fully connected layer of ResNet-18 with a tanh activation is connected to W. This dictionary forms a

meaningful and semantically-informed VSA representation for individual object that is kept frozen during training, while the
weights of ResNet-18 are learned by performing end-to-end training. The training procedure directs ResNet-18 to generate a

query vector, q, such that it resembles the superposition of the VSA objects (w2‘w5) available in the panel currently under the
visual fixation. This results in merging the data-driven neural representation of the objects with their corresponding

compositional VSA representation. (c) NVSA backend for reasoning. From the perceived similarities between q and W, a
probabilistic scene inference computes a set of probability mass functions (PMFs) for the attributes. The PMFs are shown as
Ppi, jq for every panel at location pi, jq in the context matrix. These are used in the NVSA backend to predict the PMF of the

missing panel (P̂p3,3q). The backend performs probabilistic calculations according to a set of rules in a differentiable and
computationally-efficient manner, while not requiring any trainable parameters. The final answer is selected by choosing the

candidate panel that minimizes the divergence between the predicted PMF (P̂p3,3q) and the PMF of the candidate panels
(Pp1q, ...,Pp8q).

TABLE I: Reasoning accuracy (%) and CPU compute time (min) when solving 2000 examples on the RAVEN test sets using
the ground-truth panel attributes. Experiments where conducted with Intel Xeon E5-2640 cores running at 2.4 GHz. NVSA

backend was configured with vector dimension d=1024 and κ=4 blocks.

Accuracy (%) CPU compute
time (min)

Method 2x2 3x3 O-IG 2x2 3x3 O-IG

PrAE23 94.67 94.21 95.68 1.0 648.1 1.4
Our unrestricted PrAE 98.82 97.50 99.22 1.1 15,408.5 2.2
NVSA backend 99.19 96.89 99.55 12.6 63.2 18.5

FIG. 2: Proposed neuro-vector-symbolic architecture (NVSA). (a) An example of RPM test taken from the RAVEN dataset
that can be solved by NVSA. The context panels are composed of eight panels followed by a missing panel at (3,3). The

candidate panels provide the potential candidates for the missing context panel. The correct answer is the 6th panel. (b) NVSA
frontend for perception. The frontend uses a trainable neural network (ResNet-18) and a frozen dictionary W that is generated

by the four codebooks of d-dimensional vectors to cover all possible objects (w1,w2, ...,wm, where d� m in the RAVEN
dataset). The last fully connected layer of ResNet-18 with a tanh activation is connected to W. This dictionary forms a

meaningful and semantically-informed VSA representation for individual object that is kept frozen during training, while the
weights of ResNet-18 are learned by performing end-to-end training. The training procedure directs ResNet-18 to generate a

query vector, q, such that it resembles the superposition of the VSA objects (w2⊕w5) available in the panel currently under the
visual fixation. This results in merging the data-driven neural representation of the objects with their corresponding

compositional VSA representation. (c) NVSA backend for reasoning. From the perceived similarities between q and W, a
probabilistic scene inference computes a set of probability mass functions (PMFs) for the attributes. The PMFs are shown as
P(i, j) for every panel at location (i, j) in the context matrix. These are used in the NVSA backend to predict the PMF of the

missing panel (P̂(3,3)). The backend performs probabilistic calculations according to a set of rules in a differentiable and
computationally-efficient manner, while not requiring any trainable parameters. The final answer is selected by choosing the

candidate panel that minimizes the divergence between the predicted PMF (P̂(3,3)) and the PMF of the candidate panels
(P(1), ...,P(8)).
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FIG. 3: NVSA backend. (a) Steps involved in the NVSA reasoning. First, a PMF of a discrete or a continuous attribute is
transformed to the VSA format of binary sparse block codes. This transformation (g) is illustrated for the PMF of an attribute
with n possible values. Next, the VSA algebra can be applied on the VSA representations of PMFs to implement the rule of
interest. Last, after executing the rule, the resulted VSA representation can be cleaned up by doing an associative memory

search on the codebook of values that returns an output PMF. (b) Illustration of solving the arithmetic plus rule. The
PMF of each panel ppi, jqnum is transformed to the VSA representation. In the rule probability computation step, the VSA

representations of first two panels are bound together per row, yielding two row vectors r1 and r2. The rule probability is
computed by multiplying the similarities between the row vectors ri and the last panel of the first two rows, and an additional

constraint ha. In the rule execution, the VSA representation of the missing panel is predicted by binding the VSA
representations of position (3,1) and (3,2). Finally, an associative memory search computes the similarities between the

predicted vector and all atomic vectors to determine the PMF p̂p3,3qnum . (c) The NVSA backend for solving the distribute
three rule. In the rule detection step, the VSA representations of the first two rows are bound together per row, yielding r1
and r2. The rule probability is the product of the similarity between the two row vectors, the similarity between the first two

column representations c1 and c2. In the rule execution, the VSA representation of the missing panel is predicted by unbinding
the vector representations of position (3,1) and (3,2) from one of the two row representations, e.g., r2.

FIG. 3: NVSA backend. (a) Steps involved in the NVSA reasoning. First, a PMF of a discrete or a continuous attribute is
transformed to the VSA format of binary sparse block codes. This transformation (g) is illustrated for the PMF of an attribute
with n possible values. Next, the VSA algebra can be applied on the VSA representations of PMFs to implement the rule of
interest. Last, after executing the rule, the resulted VSA representation can be cleaned up by doing an associative memory

search on the codebook of values that returns an output PMF. (b) The use of backend in solving the arithmetic plus rule.
The PMF of each panel p(i, j)

num is transformed to the VSA representation. In the rule probability computation step, the VSA
representations of first two panels are bound together per row, yielding two row vectors r1 and r2. The rule probability is

computed by multiplying the similarities between the row vectors ri and the last panel of the first two rows, and an additional
constraint ha. In the rule execution, the VSA representation of the missing panel is predicted by binding the VSA

representations of position (3,1) and (3,2). Finally, an associative memory cleanup computes the similarities between the
predicted vector and all atomic vectors to determine the PMF p̂(3,3)

num . (c) The NVSA backend for solving the distribute
three rule. In the rule detection step, the VSA representations of the first two rows are bound together per row, yielding r1
and r2. The rule probability is the product of the similarity between the two row vectors, the similarity between the first two

column representations c1 and c2. In the rule execution, the VSA representation of the missing panel is predicted by unbinding
the vector representations of position (3,1) and (3,2) from one of the two row representations, e.g., r2.
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FIG. 4: Average accuracy on the (a) RAVEN and (b) I-RAVEN test sets. It compares the classification accuracy of the
state-of-the-art approaches in deep neural networks (SCL44) and neuro-symbolic AI (PrAE23) with our NVSA, when all models
are trained end-to-end. Error bars indicate the standard deviation from five training and validation runs with different seeds (the
exact numeric values are provided in the Extended Tables II and III). The human performance reported in7 is also shown in (a)
for the RAVEN dataset. The I-RAVEN dataset is a revised unbiased version of the RAVEN dataset which generates a fair set of

answer panels to eliminate the shortcut solution in the RAVEN dataset (see Methods for details).

TABLE I: Reasoning accuracy (%) and CPU compute time (min) when solving 2000 examples on the RAVEN test sets using
the ground-truth panel attributes. Experiments where conducted with Intel Xeon E5-2640 cores running at 2.4 GHz. NVSA

backend was configured with vector dimension d=1024 and κ=4 blocks.

Accuracy (%) CPU compute
time (min)

Method 2x2 3x3 O-IG 2x2 3x3 O-IG

PrAE23 94.67 94.21 95.68 1.0 648.1 1.4
Our unrestricted PrAE 98.82 97.50 99.22 1.1 15,408.5 2.2
NVSA backend 99.19 96.89 99.55 12.6 63.2 18.5
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TABLE II: End-to-end model accuracy (%) on the RAVEN test set. The upper part of the table shows the results reported in the
literature, while in the lower part, we report the average accuracy ± the standard deviation over five runs with different seeds

for our NVSA and the reproduced baselines. The NVSA was either trained end-to-end (see equation (19)) or with the auxiliary
visual attribute labels (see Supplementary equation (3)).

Method Avg Center 2x2 grid 3x3 grid L-R U-D O-IC O-IG

WReN4 14.7 13.1 28.6 28.3 7.5 6.3 8.4 10.6
ResNet7 53.4 52.8 41.8 44.3 58.8 60.2 63.2 53.1
ResNet+DRT7 59.6 58.1 46.5 50.4 65.8 67.1 69.1 60.1
Shah et al.24 67.5 94.6 53.1 33.9 85.0 89.1 89.8 31.9
LEN5 78.3 82.3 58.5 64.3 87.0 85.5 88.9 81.9
CoPINet6 91.4 95.1 77.5 78.9 99.1 99.7 98.5 91.4
DCNet47 93.6 97.8 81.7 86.65 99.8 99.8 99.0 91.5

PrAE23 60.3±2.7 70.6±5.3 83.5±2.8 30.5±1.7 88.5±4.2 89.2±4.1 37.3±3.1 22.7±2.2

MRNet10 74.7±3.3 96.2±4.3 49.1±4.7 45.9±6.0 93.7±2.1 94.2±2.1 92.5±1.1 51.3±11.5

SCL44 87.2±0.9 99.9±0.0 76.6±0.8 63.5±4.7 96.8±5.6 98.4±3.0 96.5±3.6 78.5±2.5

NVSA (end-to-end tr.) 87.7±0.5 99.7±0.4 93.5±2.9 57.1±3.3 99.8±0.1 99.7±0.2 98.6±1.6 65.4±0.6

NVSA (attribute label tr.) 98.5±0.1 100±0.0 99.4±0.0 96.3±0.6 100±0.0 100±0.0 100±0.0 93.9±0.0

Human7 84.4 95.5 81.8 79.6 86.4 81.8 86.4 81.8

TABLE III: End-to-end model accuracy (%) on the I-RAVEN test set. The upper part of the table shows the results reported in
the literature, while in the lower part, we report the average accuracy ± the standard deviation over five runs with different
seeds for our NVSA and the reproduced baselines. The NVSA was either trained end-to-end (see equation (19)) or with the

auxiliary visual attribute labels (see Supplementary equation (3)).

Method Avg Center 2x2 grid 3x3 grid L-R U-D O-IC O-IG

WReN4 23.8 29.4 26.8 23.5 21.9 21.4 22.5 21.5
ResNet7 40.3 44.7 29.3 27.9 51.2 47.4 46.2 35.8
ResNet+DRT7 40.4 46.5 28.8 27.3 50.1 49.8 46.0 34.2
SRAN8 60.8 78.2 50.1 42.4 70.1 70.3 68.2 46.3
LEN5 41.4 56.4 31.7 29.7 44.2 44.2 52.1 31.7
CoPINet6 46.1 54.4 36.8 31.9 51.9 52.5 52.2 42.8
DCNet47 49.36 57.8 34.1 35.5 58.5 60.0 57.0 42.9

PrAE23 71.1±2.1 83.8±3.4 82.9±3.3 47.4±3.2 94.8±2.1 94.8±2.1 56.6±3.0 37.4±1.7

MRNet10 75.0±1.4 96.8±3.7 45.6±3.3 39.6±1.8 95.7±1.5 95.9±1.8 95.6±1.5 55.5±4.7

SCL44 84.3±1.1 99.9±0.0 68.9±1.9 43.0±6.2 98.5±2.9 99.1±1.5 97.7±1.3 82.6±2.5

NVSA (end-to-end tr.) 88.1±0.4 99.8±0.2 96.2±0.8 54.3±3.2 100±0.1 99.9±0.1 99.6±0.5 67.1±0.4

NVSA (attribute label tr.) 99.0±0.3 100±0.0 99.5±0.0 97.1±1.8 100±0.0 100±0.0 100±0.0 96.4±0.0
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SUPPLEMENTARY FIGURES

Supplementary Figure 1: Details on the RAVEN dataset.

Supplementary Figure 1: (a) Examples of the seven constellations in the RAVEN dataset. We enumerate 22 unique positions
(in blue) across all seven constellations. Moreover, we merge overlapping positions with the same proportions across

constellations, which are 1) the object in center, the outer object in out-in center, and the outer object in out-in grid (enumerated
with “1”); and 2) the middle object in 3x3 grid and the inner object in out-in center (enumerated with “10”). (b) Examples for

the four types of rules in RAVEN. In these examples, the rules are applied on the position attribute, or number attributes. A
separate rule is applied per attribute, the displayed attribute and rule is just one of them. (c) An example of RPM test from the
RAVEN dataset using the 3x3 grid constellation. There are eight context panels and eight answer panels. In this example, the
number of objects stays constant per row. Moreover, the size values (small, medium, large) of the objects are distributed per
row. Even though the shapes do not agree within a panel, they stay constant per row. The arithmetic minus rule is applied on

the attribute color. Combining the detected rule leads to the correct answer panel 5.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Neural network representation learning over VSA and its generalization

In this Supplementary Note, we present further investigations into the NVSA frontend for the visual perception. In the first
subsection (a), we explain the direct supervised training of the frontend in the presence of the visual ground-truth attribute labels
using a novel additive cross-entropy loss. We also analyze the object classification accuracy and compare it with other loss
functions and perceptual methods. In the next two subsections (b and c), we study the generalizability of the NVSA frontend in
isolation for unseen attribute-value combinations (b) and unseen combinations of multiple objects (c).

a. Supervised training with additive cross-entropy loss and comparisons

We consider a supervised training setup in which the visual ground-truth attribute labels for all objects are provided. There-
fore, the frontend can be trained standalone. We mutually train a universal NVSA frontend on all training constellations by
enumerating all possible positions and merging the identical positions across constellations (see Supplementary Fig. 1). For an
image panel X, containing k objects, with k target indices Y := {yi}k

i=1, the trainable parameters θ of ResNet-18 are optimized
to maximize the similarity between its output query q = fθ (X) and the bundled vector wy1 ⊕ ...⊕wyk . The dictionary matrix
W stays fixed during training. As noted, each vector in W is computed by multiplicative binding of the codebooks, so we call
this W encoding multiplicative binding. Due to the similarity-preserving property of the bundling operation, maximizing the
similarity between the query vector and the bundled vector is equivalent to maximizing the similarity between the query vector
and each object vector:

θ
∗ =argmax

θ

sim
(

fθ (X),wy1 ⊕ ...⊕wyk

)
(1)

≈argmax
θ

sim( fθ (X),wy1)+ ...+ sim
(

fθ (X),wyk

)
. (2)

We propose to optimize equation (1) utilizing a novel additive cross-entropy loss, defined as

L (X,Y,θ) :=−log
esl ·(sim( fθ (X),wy1 )+...+sim( fθ (X),wyk )))

esl ·(sim( fθ (X),wy1 )+...+sim( fθ (X),wyk ))) +∑
m
i=1 esl ·(sim( fθ (X),wyi ))

, (3)

where sl is an inverse softmax temperature. The loss is optimized using the batched stochastic gradient descent by exclusively
updating the parameters θ while freezing W. As the cosine similarity is bound between -1 and +1 and the softmax function
embedded in the cross-entropy loss is scale sensitive, we scale the logit vector with a scalar sl , serving as an inverse softmax
temperature for improved training.

As an alternative loss function, the NVSA frontend can be trained with a randomized cross-entropy loss, which focuses on
optimizing of the similarity between the query and one randomly picked object vector w ji, i∈{y1,...,yk} at a time. We compute the
m-dimensional logit vector z = Wq, pick one of the target indices at random, and compute the cross-entropy loss based on the
scaled logit vector and the randomly picked target index. By repeating the optimization for multiple epochs, the randomized
cross-entropy loss guides fθ to generate a composite vector that resembles the bundling of all object vectors in the panel.

During inference, ResNet-18 generates a query vector that can be decomposed into constituent object vectors. The decom-
position performs a matrix-vector multiplication between the normalized dictionary matrix W and the normalized query vector,
q, to obtain the cosine similarity scores z. The similarity scores are passed through a thresholded detection function gτ , which
returns the indices of the score vector whose similarity exceeds a threshold. The optimal threshold τ := 0.23 is determined by
cross-validation and is identical across all constellations. Since the structure of the dictionary matrix is known, we can infer the
labels for the attributes, namely position, color, size, and type, from the detected indices.

In the following, we assess the performance of the NVSA frontend by evaluating the panel accuracy when predicting the
attribute values of type, size, color, and position for each panel. A correct prediction is counted only if all attribute values of
all objects in a panel are predicted correctly. We compare the perception accuracy of the NVSA frontend in different training
configurations with the visual perception part of PrAE23. The visual perception part of PrAE consists of four separate LeNet-
like architectures, which predict objectiveness, type, size, and color. Since the original PrAE was trained only on the 2x2
constellation, we also train the visual perception part of PrAE on each constellation individually.

For learning the parameters of our NVSA frontend and PrAE23, we extract the 16 panels (eight context panels and eight
answer panels) and use ground-truth attribute values provided by the dataset as meta-labels. We exclusively trained and tested
the models on the RAVEN training and testing sets, respectively. Moreover, we also train our NVSA frontend on a partial
training set containing only 6000 training samples (instead of full 42,000 samples) by taking training samples from the individual
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constellations based on a share that corresponds to their number of possible locations, e.g., 3x3 grid provides 9× more training
samples than the center. The trainable parameters are trained using batched stochastic gradient descent (SGD) with a weight
decay of 10−41e-4 and a momentum of 0.9.

Supplementary Table I compares the panel accuracy of these different perception methods. Training the NVSA frontend on the
full training set yields a highly accurate model that significantly outperforms the constellation-dependent PrAE models, where
the additive cross-entropy loss results in 2.4% higher accuracy compared to the random loss (99.76% vs. 97.33%). The additive
cross-entropy loss notably outperforms the randomized cross-entropy loss in the constellations with many possible locations,
e.g., in the 3x3 grid (98.61% vs. 85.70%) or the out-in grid (99.95% vs. 97.30%). Moreover, when training the perception
only on the partial training set (i.e., 1/7 of the full training set), the NVSA frontend accuracy is almost preserved with both the
additive (99.76% vs. 97.16%) and the random cross-entropy loss (97.33% vs. 96.78%) while reducing the training set to the size
of a single constellation (42,000 samples vs. 6000 samples). This showcases the sample efficiency of our approach.

Finally, we merge this instance of the NVSA frontend, which is trained on the complete training set with the additive cross-
entropy loss, with the NVSA backend to solve the complete RPM tests. Tables II and III show the performance in the last
row. NVSA achieves the highest accuracy of 98.5% and 99.0% on RAVEN and I-RAVEN, respectively, thanks to its accurate
perception.

Supplementary Table I: Panel accuracy (%) of the visual perception methods on the RAVEN test set. The methods are trained
with the visual attribute labels. Avg denotes the average accuracy over all test constellations. L-R stands for left-right, U-D for

up-down, O-IC for out-in center, and O-IG for out-in grid.

Method Training
Loss

Training
Constellation(s)

# Training
Samples Avg Center 2x2 grid 3x3 grid L-R U-D O-IC O-IG

PrAE23 perception Rand. CEL Individual? 42,000 85.27 88.65 93.56 73.95 100.0 100.0 94.23 46.52
NVSA frontend Add. CEL Full† 42,000 99.76 100 99.83 98.61 99.97 99.96 99.97 99.95
NVSA frontend Rand. CEL Full† 42,000 97.33 100 99.30 85.70 99.67 99.56 99.73 97.30
NVSA frontend Add. CEL Partial† 6,000 97.16 98.84 99.26 86.23 99.66 99.55 99.75 96.85
NVSA frontend Rand. CEL Partial† 6,000 96.78 99.83 99.18 84.95 99.63 99.52 99.74 94.57

? The training constellation is identical to the testing constellation, thus seven independent models were trained and tested.
† A universal model on all seven constellations was trained and tested.

b. Generalizability of multiplicative binding to unseen combinations of attribute values

In this part, we investigate the generalizability of the NVSA frontend to unseen attribute-value combinations. To that end,
we consider the single object case for the 2x2 grid constellation. After choosing a set of values for each of the four attributes
(position, color, size, and type), the training and test datasets for each of the six pairs of attributes are generated as follows. For
the pair of attributes {Ai,A j}i, j∈{1,..,4} and their associated set of values Vi and Vj, an object is considered during training if at
least one of its values for Ai or A j is in the prespecified sets Vi and Vj. The test set only contains objects that do not satisfy the
condition for Ai nor A j.

For instance, when we choose the first quadrant for position and the triangle for type as the pair of attribute-value of interest,
the training set contains panels with single objects of all types placed on the first quadrant or triangles located on the remaining
three quadrants. In this case, the test set is composed of single objects of all types except triangles placed on all quadrants,
excluding the first one. We note that in this setting, the considered objects can have any value for the rest of attributes that
is color and size. The datasets for the example above are depicted in Supplementary Fig. 2. Supplementary Table II lists the
training and testing attribute combinations for all six pairs of attributes.

The second type of generalization experiment involves determining two sets of values per attribute. For attribute Ai, the two
sets are denoted Vi,1 and Vj,2. Accordingly, for the pair of attributes {Ai,A j}i, j∈{1,..,4} and their respective four sets of values Vi,1,
Vi,2, Vj,1, and Vj,2, the training set comprises objects with values for the two attributes in Vi,1 and Vj,1, or in Vi,2 and Vj,2. The test
set is the remaining data points in the complement of the training set. This partitioning is inspired by the CLEVR dataset56 for
compositional generalization experiments.

In both investigated generalizability settings, the NVSA frontend based on the multiplicative binding cannot provide the
correct predictions for the test sets, resulting in 0% test accuracy for all six attribute pairs (see the 4th column of Supplementary
Table II). According to these results, this frontend instance does not show any sign of attribute-value generalizability. In fact,
the frontend’s inability to generalize is an inherent property of the multiplicative binding of quasi-orthogonal vectors; each entry
of the cosine similarity scores vector z corresponds to the similarity value with the embedding vector of a given combination of
the considered four attributes. Through the additive cross-entropy loss, the model learns to maximize the entry corresponding
to the target and minimize the rest. In the context of the generalization experiments, the set of components of the vector z
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(a) Training set (b) Test set

Supplementary Figure 2: The types of panels considered in the training set (a) and test set (b) for the first type of generalization
experiments in the following pair of attribute-value: the first quadrant for position, and triangle for type.

corresponding to the training set and that of the test set are mutually exclusive. Therefore, when the dictionary matrix W
contains quasi-orthogonal vectors, the model cannot be expected to perform accurate predictions for any unseen combination of
the attributes.

After identifying this limitation in the attribute-value generalizability of the multiplicative binding encoding, we enhance this
encoding by the addition (bundling) operation to add key-value bound pairs. In this enhanced multiplicative-additive encoding,
we describe an object w with attribute values a,b,c,d for type, size, color, and position as

w =
(
rtype� ta

)
⊕ (rsize� sb)⊕ (rcolor� cc)⊕

(
rpos� ld

)
, (4)

where ri ∈ {−1,+1}d are randomly initialized key vectors. The key vectors are bound with the corresponding value vectors (ta,
sb, cc, and ld), yielding key-value pairs which are added (bundled) to represent all attributes of the object. The multiplicative-
additive encoding allows the extraction of each attribute’s value individually by unbinding the object representation (w) with
the key vector; the knowledge of other attribute values is not required. Hence, this encoding explicitly disentangles the attribute
values. This allows us to treat each attribute individually and, more importantly, formulate the attribute recognition as a re-
gression problem where a relationship between values exists. Concretely, we formulate the recognition of the color and the
size as a regression problem using hyperspherical prototypes57. Instead of dictating the target vector of every attribute value,
hyperspherical regression only defines the target vectors of the minimum and maximum values. The intermediate values are
uniformly distributed on the hypersphere in terms of cosine similarities. For example, the target vectors for the attribute color
with 10 values are c1 = −x and c10 = x, where x is a randomly initialized vector. The representation of an intermediate color
value (ci) should then have a cosine similarity of

cos(c10,ci) = 2 · i−1
mc−1

−1, (5)

where mc = 10 is the number of possible color values. Finally, the visual perception module is trained by optimizing the mean-
squared error for the hyperspherical prototypes (color and size) and the categorical cross-entropy loss for the position and type.

Supplementary Table II compares the generalization capabilities of the NVSA frontend when using different encodings: the
multiplicative versus the multiplicative-additive. Indeed, the multiplicative-additive encoding significantly improves the gen-
eralization in four attribute pairs compared to the pure multiplicative encoding: position-color (34.8%), position-size (15.1%),
color-size (29.3%), and color-type (72%). There are still two attribute pairs of position-type and size-type that show 0% gener-
alization, which could be due to the spatial structure of the CNN’s filters.

c. Generalizability of multiplicative binding to unseen combinations of multiple objects

In the previous subsection, we observe that the NVSA frontend using the encoding of multiplicative-additive with hyper-
spherical prototypes can generalize to some unseen combinations of the attribute values in a single object, while the encoding
with the multiplicative binding of the quasi-orthogonal vectors cannot. Here, we further evaluate whether the multiplicative
encoding can generalize to unseen combinations of multiple objects. We train the NVSA frontend (hereafter, we simply omit the
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Supplementary Table II: Accuracy of attribute-value generalization (%) of the NVSA frontend in the 2x2 grid constellation
containing k=1 object. The training and test sets are chosen such that the attribute-value sets are disjoint. The NVSA frontend
is trained with the ground-truth attribute labels by optimizing the loss in equation (3) with SGD. The NVSA frontend uses two

different encodings: multiplicative binding of quasi-orthogonal vectors, and multiplicative-additive of hyperspherical.

Training combinations Testing combinations Multiplicative +
quasi-orthogonal

Multiplicative-additive +
hyperspherical

Position-color Position ∈ {0, 3} OR
color ∈ {0, 3, 6, 8}

Position /∈ {0, 3} AND
color /∈ {0, 3, 6, 8} 0.0 34.8

Position-type Position ∈ {0, 3}
OR type ∈ {0, 2}

Position /∈ {0, 3}
AND type /∈ {0, 2} 0.0 0.0

Position-size Position ∈ {0, 3}
OR size ∈ {1, 5}

Position /∈ {0, 3}
AND size /∈ {1, 5} 0.0 15.1

Color-size Color ∈ {0, 3, 6, 8}
OR size ∈ {1, 5}

Color /∈ {0, 3, 6, 8}
AND size /∈ {1, 5} 0.0 29.3

Color-type Color ∈ {0, 3, 6, 8}
OR type ∈ {0, 2}

Color /∈ {0, 3, 6, 8}
AND type /∈ {0, 2} 0.0 72.0

Size-type Size ∈ {1, 5}
OR type ∈ {0, 2}

Size /∈ {1, 5}
AND type /∈ {0, 2} 0.0 0.0

repetitive multiplicative encoding term) in the 2x2 grid constellation where the training set contains as a basis all possible panels
with exactly one object, which are 9600 panels when considering that we have 10 color, 6 size, 5 type, 8 angle, and 4 position
attribute values. We provide two training settings ktrain ∈ {1,2}, where ktrain is the number of available objects in the panel. In
the training setting ktrain = 1, we only train the NVSA frontend using the basis training set with a single object, whereas in the
ktrain = 2 setting we have augmented the basis training set by another 9,600 panels containing 2 objects. The validation sets are
always constructed in the same way as the training sets. In the testing, we consider the settings ktest ∈ {2,3,4}, where in each
setting, the trained models are tested on 28,800 panels containing a fixed number of ktest objects in the panel. See the first two
rows in Supplementary Table III.

The model parameters are trained using SGD with a weight decay of 1e-4 and a momentum of 0.9. The batchsize was set
to 256, and we used the scaling factor sl = 1. Furthermore, we set the learning rate to 0.1 and decay by factor of 10 every 30
epochs. Moreover, the number of epochs is scaled such that all trained models have approximately the same number of updates.
The optimal threshold τ is determined by cross-validation, where the selection criteria is τ = argmaxτ̂ v(τ̂)−4τ̂ , where v(τ) is
the accuracy on the validation set using threshold τ . We included the regularization on the magnitude of τ since we generally
predicted too few objects when ktest was large.

Next, we construct a similar experiment in the 3x3 grid constellation, in which the basis of the training set contains all 21,600
possible single-object panels. Compared to the 2x2 grid, there are 9 position attributes instead of 4. We consider the training
settings ktrain ∈ {1,2,3,4}, where in ktrain = 1 we only use the basis training set to train the NVSA frontend. In the settings
where ktrain ≥ 2, we augment the training set which is used in the setting ktrain− 1 by 21,600 panels containing exactly ktrain
objects. The validation sets are always constructed in the same way as the training sets in each setting. In the testing, we consider
the settings ktest ∈ {2,3,4,5,6,7,8,9}, where in each setting, the trained models are tested on 64,800 panels containing a fixed
number of ktest objects in the panel. The training hyperparameters are chosen as in the above experiment, except that the optimal
threshold τ is determined using τ = argmaxτ̂ v(τ̂)−9τ̂ as our selection criteria. Note that in both experiments, we omit to test
the single object setting because every possible single object panel is already contained in the corresponding training set. The
results of the two experiment sets are summarized in Supplementary Table III.

In the 2x2 grid constellation, we observe that after training in the ktrain = 1 setting, the NVSA frontend is already able to
correctly predict the majority of the panels in the ktest ∈ {2,3} settings, where it achieves 92.4% and 68.1% without even having
seen an instance of multiple object panel in training. Nevertheless, there is a significant accuracy drop in the ktest = 4, achieving
19.3%. However, training with the 2 object combinations (i.e., ktrain = 2) achieves an average panel accuracy of 97.1% in all
testing settings. Considering the out-of-distribution (OOD) testing cases, i.e., ktest ∈ {3,4}, an average panel accuracy of 97.3%
is achieved. This indicates that training with the simple cases of up to 2 objects in the panels is enough to generalize to panels
that contain up to 4 objects.

In the 3x3 grid constellation, we observe similar trends in the ktrain = 1 setting, where it correctly predicts 70.6% of the panels
containing 2 objects. However, in the testing settings ktest ∈ {5,6,7,8,9} the model is overwhelmed by the presence of too many
objects at the same time. In ktrain = 2, it is able to obtain non-zero panel accuracy in all testing settings except the most complex
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one (ktest = 9). This indicates that the model is able to generalize in more complex panels with up to 8 objects after having
encountered the panels with at most 2 objects. We observe that increasing the number of objects during training results in a
higher OOD average panel accuracy, where the accuracy is monotonically improving with respect to ktrain. Note that the OOD
average is calculated over a more complex set, when we increase ktrain. Finally, the NVSA frontend achieves an average panel
accuracy of 86.3% after training only on the panels which contain less than half of the maximal number of objects allowed in
the 3x3 grid constellation.

Supplementary Table III: The NVSA frontend using multiplicative binding and its generalization to a growing number of
unseen objects in the RAVEN panel. The frontend is trained with a fixed number of objects ktrain ranging from 1 to 2 in the 2x2
constellation, and then the test panel accuracy (%) is reported for an unseen number of object combinations (ktest) ranging from
2 up to 4 objects. Similar experiments are done in the 3x3 constellation where ktrain ∈ {1,2,3,4} and ktest ∈ {2,3,4, ...,9}. Avg
denotes the average accuracy over all testing samples and OOD Avg denotes the average accuracy on testing samples with more

than ktrain objects.

Training
Constellation

# Training
Samples # Epochs ktrain

ktest Avg OOD
Avg2 3 4 5 6 7 8 9

2x2 9600 200 1 92.4 68.1 19.3 - - - - - 59.9 59.9
2x2 19,200 100 2 96.6 97.3 97.3 - - - - - 97.1 97.3

3x3 21,600 400 1 77.6 30.1 2.5 0.0 0.0 0.0 0.0 0.0 13.8 13.8
3x3 43,200 200 2 89.2 83.4 60.9 30.7 10.9 2.8 0.6 0.0 34.8 27.0
3x3 64,800 133 3 92.6 92.6 90.7 82.4 67.3 49.1 32.7 17.3 65.6 56.5
3x3 86,400 100 4 89.3 89.9 90.9 91.8 91.4 88.4 81.2 67.8 86.3 84.0

d. Resolution issues in the RAVEN dataset

In addition to its high perception accuracy, the NVSA frontend offers better transparency, allowing us to discover issues in
the generative process in the RAVEN dataset. Some objects in the inner part of the out-in grid constellation have a different size
attribute value but the same image representation. The problem occurs in cases where the size attribute differs by one value;
hence, it can be attributed to an insufficient image resolution. This generation problem only concerns objects of type square and
is observed in 42.15% of the panels. For validating the perception accuracy, we solve this issue by merging classes with different
sizes but same image representation.
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Supplementary Note 2: Visual Analogies

In this Supplementary Note, we demonstrate another use case in which the appropriate perceptual representations in the
NVSA frontend can be used directly to solve higher-level reasoning tasks. Specifically, we show that the predicted perceptual
representations at the output of ResNet-18 can be directly manipulated by the binding operations to solve visual analogy tasks
(A : B :: α : β ). In the studied task, we consider a source domain that shares one relationship, or multiple relationships, between
its two sets of objects (A : B), and a target domain that shares the same relationship(s) between its object sets (α : β ). Binding
the neural network representations obtained from the source domain allows to capture the relationship(s) solely from a single
example, which can be applied to novel circumstances in the target domain by another application of the binding operation.

We generate a new RAVEN-like test dataset, in which a visual analogy problem consists of four panels arranged in a 2×2
matrix with a missing panel in the bottom right, as shown in Supplementary Fig. 3a. The first row constitutes the source domain
where there is at least one relationship between the two panels (indicated by the blue arrow), and the second row constitutes the
target domain that should establish the same relationship between one of its panels and the missing one. We demonstrate how
the relationship can be captured from a single example in the source domain and how it can be applied beyond the example from
which it was learned (i.e., in the novel circumstances of the target domain). This can be done by solely applying consecutive
binding operations at the vector outputs generated from the neural network: the first binding operation captures the relationship
in the source domain, and the second one applies it to the target domain.

a. One-to-one relationship

We describe how the relationship can be captured from the source domain and how it can be applied (i.e., transferred) to the
target domain. We explain it using the visual analogy example shown in Supplementary Fig. 3a. We name this analogy problem
one to one because there is only one relationship among the two objects in the source domain. Using our NVSA frontend,
ResNet-18 generates the VSA representations of qA, qB, and qα for the objects in panels A, B, and α . By manipulating these
VSA representations, we aim to generate the VSA representation of the solution panel β .

To better explain the analogy, let us refer to the ground-truth VSA representations of the object in the panels. We only refer
to them for the sake of clarification; note that they are not used for solving analogies. In our example shown in Supplementary
Fig. 3a, we have the following ground-truth VSA object representations:

oA = l5� tsquare� s2� c3 (6)
oB = l5� tpentagon� s5� c3 (7)

oα = l2� tsquare� s2� c3 (8)
oβ = l2� tpentagon� s5� c3 (9)

In this example, oA is related to oB by changing its type from square to pentagon and increasing its size from 2 to 5. Using the
binding operation between the corresponding perceptual representations generated by ResNet-18 (qA and qB) allows capturing
this relationship in a VSA representation (rA:B) as a high-dimensional vector via:

rA:B = qA�qB ≈ oA�oB = tsquare� tpentagon� s2� s5. (10)

As shown, the resulting relationship vector rA:B approximately expresses the binding between four attribute vectors that are
actively involved in the relationship. In fact, rA:B transparently describes that tsquare should be mapped to tpentagon, and s2 should
be mapped to s5. This relationship vector provides an explanation as to how the source objects can inductively be mapped to the
target objects. Therefore the relationship can be readily applied beyond the example from which it is learned. In order to apply
the relationship rA:B in the target domain (α : β ), we bind the relationship vector with the object vector qα , resulting in:

ôβ = rA:B�qα ≈ (11)

rA:B�oα = (12)
(tsquare� tpentagon� s2� s5)� (l2� tsquare� s2� c3) = (13)

l2� tpentagon� s5� c3 = oβ . (14)

We observe that the VSA-generated object (ôβ ) matches the target object (oβ ). In short, the final answer generation consists of
binding both panels from the source domain and the first panel from the target domain, i.e., ôβ = qA�qB�qα .

We generated our one to one problems by using the 2x2 grid constellation of the RAVEN dataset, where we used the rules
constant and distribute two in the generation process. The rules are applied to the position, type, size, and color. The
constant rule fixes the value of an attribute in a row, whereas in the distribute two rule, we sample two valid and distinct
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values and assign the first value to the object in panels A and α and the second value to panels B and β . The rule of each attribute
is selected individually, with the constraint that there is at least one attribute with the constant rule. The attribute values of
the object in panel α are only allowed to differ if the rule on the attribute is constant. We generated 6,000 one to one
problems, where these problems can be further divided into sets of size 2,000 that contain the distribute two rule once,
twice, and three times.

For evaluation, we trained the NVSA frontend for 100 epochs with a batchsize of 256 and scaling factor sl = 1 on the
panels from the standard RAVEN training set in the 2x2 grid constellation. We have used a learning rate of 0.1, which we
have decreased by a factor of 10 every 30 epochs. We consider the analogy to be successfully solved when the ground-truth
VSA representation of the object in panel β (i.e., oβ ) has the highest cosine similarity with our generated answer ôβ . This
has been done by an associative memory cleanup that computes the similarities between the generated vector and all the object
vectors in the dictionary W, i.e., oβ = argmaxw∈Wsim(ôβ ,w). Using the output of our NVSA frontend, we solved the generated
one to one analogies with an accuracy of 100%.

b. One to many relationship

We expand the one to one analogies to one to many analogies, where an example is shown in Supplementary Fig. 3b.
The main difference compared to the one to one analogies is that the number of objects in the panels B and β can be more
than one, e.g., 2, 3, or 4. This means there are relationships between the objects (depicted with different colors in Supplementary
Fig. 3b).

We describe capturing the relationship set and transferring the relationship set to the target domain based on an example with
a fixed number of objects (k) in the panels B and β . Since there are multiple (k) objects in the panel B, its ground-truth VSA
representation is the addition (i.e., bundling) of the VSA representations of the individual objects (oB1 , ..., oBk ) present in the
panel, which is expressed by

oB = oB1 ⊕ ...⊕oBk . (15)

Similarly, the ground-truth VSA representation of the panel β is:

oβ = oβ1 ⊕ ...⊕oβk
. (16)

The trained ResNet-18 generates the perceptual representations for the three panels: qA, qB, qα . Similar to Supplementary
Note 2a, binding qA and qB captures the relationship set in rA:B. This is because, in VSA, multiplication (binding) distributes
over addition (bundling). The relationship vector rA:B is an approximation of the bundle of all one to one analogies present
in the source domain, namely:

rA:B = qA�qb ≈ r1
A:B⊕ ...⊕ rk

A:B,where ri
A:B = oA�oBi for i = 1, ...,k. (17)

Finally, the relationship vector rA:B is bound by the object representation in panel α to represent the target domain (ôβ = rA:B�
oα ). This single binding operation performs computation-in-superposition by applying a set of relationships simultaneously. We
measure the accuracy of our analogy by calculating the cosine similarity between the ground-truth object representation oβ and
our generated representation ôβ . We consider the analogy to be solved when the cosine similarity between the two vectors is at
least 0.99.

We generated the one to many problems similar to the one to one problems, except that multiple objects are required
in panels B and β . Due to this exception, the position attribute is only allowed to have the distribute two rule since the
constant rule could not be instantiated. We generated 2000 one to many problems.

In the experiments, we used the same NVSA frontend used in Supplementary Note 2a. We achieved 100% accuracy in solving
the one to many visual analogy tasks.



27

(a) one to one analogy (b) one to many analogy

Supplementary Figure 3: Example analogy in (a) one to one scenario and (b) one to many scenario. In (a) we
illustrate a one to one visual analogy problem. In the source domain (A : B) there is an underlining relationship of changing
type and size of the object which is shown by the blue arrow. The same relationship should be applied to novel circumstances in
target domain (α : β ), where for example the position of the objects is different. In (b) we illustrate expanded one to many
visual analogy problem. In this problem, there is a set of relationships between the objects in the source domain (A : B). In the
shown example, the relationship set consists of two one to one relationships indicated by the green an violet arrows. Both

relationships change the color of the object in the same way, however they alter the position attribute to a different value.
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Supplementary Note 3: Details on the NVSA backend

In this Supplementary Note, we provide a detailed description of the NVSA backend, including the VSA representation of
PMFs, the rule probability computation and execution, and the selection of the rule and the final answer.

VSA representation of PMFs

For all attributes, the PMF is represented through the weighted superposition with the values in the PMF used as weights and
the corresponding codewords bk as basis vectors taken from the codebook B := {bk}n

k=1:

a(i, j) := g(p(i, j)) =
n

∑
k=1

p(i, j)[k] ·bk. (18)

The codebook (discrete or continuous) is selected based on the underlying attribute and rule. The number of codewords n is
given by the dimensionality of the PMF, which depends on the attribute. For example, the shape PMF is 5-dimensional due to
the five different shapes in RAVEN; hence, the transformation requires n = 5 codewords. After transforming the PMF to a VSA
representation, we can manipulate the PMFs in the VSA representation using the algebra provided by the vector space. This
allows estimating the probability u[rule] for every rule. Then, the most probable rule is selected and executed in the vector
space, yielding â(3,3). Finally, the PMF is estimated using the similarity computation with a consecutive normalization:

p̂(3,3) := norm
([

sim(â(3,3),b1),sim(â(3,3),b2), ...,sim(â(3,3),bn),
])

. (19)

An alternative VSA representation to the binary sparse block codes is Fourier holographic reduced representation (FHRR)32.
In the following, we describe a similar procedure of transforming a PMF to an FHRR-based VSA representation and compare it
with the binary sparse block codes. The basis vectors in FHRR are d-dimensional, complex-valued, unary vectors. Each element
is a complex phasor with unit norm and an angle randomly drawn from a uniform distribution U(−π,π). The dense bipolar
representations are a particular case of the FHRR model where angles are restricted to {0,π}. The binding in FHRR is defined
as the element-wise modulo-2π sum; similarly, the unbinding is the element-wise modulo-2π difference. The bundling of two or
more vectors is computed via the element-wise addition with a consecutive normalization step, which sets the magnitude of each
phasor to unit magnitude. The similarity of two vectors is the sum of the cosines of the differences between the corresponding
angles. Binding, unbinding, and similarity computation can be done using the polar coordinates, while bundling requires the
Cartesian coordinates. For a discrete attribute, we use a codebook with n unrelated basis vectors bi ∈ Cd . For representing the
PMF of a continuous attribute, we use a codebook with basis vectors generated by the fractional power encoding32, where the
basis vector corresponding to an attribute value v is defined by exponentiation of a randomly chosen basis vector e using the
value as the exponent, i.e., bv = ev. Each PMF is represented through the normalized weighted superposition with the values in
the PMF used as weights and the corresponding codewords as basis vectors:

a(i, j)FHRR := gFHRR(p(i, j)) = cnorm

(
n

∑
k=1

p(i, j)[k] ·bk

)
, (20)

where cnorm(·) normalizes the magnitude of every phasor of a d-dimensional complex-valued vector.
However, we observed nonidealities when mapping PMFs to the FHRR-based VSA representations. In a synthetic experiment,

we mapped a uniform distribution to the VSA representation using either the binary sparse block codes (by equation (18)) or
FHRR (by equation (20)), and projected them back to the PMF representation again using the associative memory search on
the corresponding codebook. Supplementary Fig. 4 shows the original and the reconstructed PMFs for discrete and continuous
concepts. We observe that both FHRR and binary sparse block codes can represent the discrete PMFs; however, FHRR faces
issues in representing continuous PMFs. This nonideality might stem from the complex normalization step in combination with
the constructive interference of the superimposed complex phasors. Thus, in this work, we use sparse binary block codes in our
NVSA backend.

Rule probability computation and rule execution

In the following, we describe the probability computation and the execution for every rule.
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(b) Continuous

Supplementary Figure 4: Reconstruction of uniformly distributed PMF using either FHRR or binary sparse block codes for
both discrete and continuous concepts. The dimension of both VSA representations is set to d=1024.

a. Arithmetic plus and minus. The arithmetic rule computes the value of the last panel by adding (arithmetic plus) or
subtracting (arithmetic minus) the attribute values of the first two panels. Since this rule relates to a continuous concept, we use
a dictionary constructed by fractional power encoding. For determining the rule probability for arithmetic plus, we represent the
addition of the first two panels using the binding operation

r+i = a(i,1)�a(i,2), i ∈ {1,2}. (21)

If the arithmetic plus rule applies, we expect sim(r+i ,a
(i,3))� 0. Let us have a closer look at the similarity expression for the

first row:

sim(r+i ,a
(1,3)) = sim(a(1,1)�a(1,2),a(1,3)) (22)

= sim

((
n

∑
k1=1

p(1,1)[k1] ·bk1

)
�

(
n

∑
k2=1

p(1,2)[k2] ·bk2

)
,

(
n

∑
k3=1

p(1,3)[k3] ·bk3

))
(23)

= ∑
k1,k2,k3

s.t.k1+k2=k3

p(1,1)[k1] ·p(1,2)[k2] ·p(1,3)[k3]+ ∑
k1,k2,k3

s.t.k1+k2 6=k3

sim(bk1 �bk2 ,bk3)p
(1,1)[k1] ·p(1,2)[k2] ·p(1,3)[k3] (24)

= ∑
k1,k2,k3

s.t.k1+k2=k3

p(1,1)[k1] ·p(1,2)[k2] ·p(1,3)[k3]+ ∑
k1,k2,k3

s.t.k1+k2 6=k3

nk1,k2,k3 ·p
(1,1)[k1] ·p(1,2)[k2] ·p(1,3)[k3] (25)

≈ ∑
k1,k2,k3

s.t.k1+k2=k3

p(1,1)[k1] ·p(1,2)[k2] ·p(1,3)[k3]. (26)

Equation (24) uses the linearity of the similarity and divides the sum into contributions that satisfy the arithmetic plus constraint
(LHS), i.e., sim(bk1 �bk2 ,bk3) = 1, and contributions which do not satisfy the constraint (RHS). For the latter, we replace the
similarity sim(bk1 �bk2 ,bk3) with nk1,k2,k3 , which can be modeled as vanishing noise as the dimension d increases. The non-
satisfying terms converge to zero with sufficiently large dimension d and we can approximate (25) with (26). Equation (26) sums
up the products of all valid rule implementations. Indeed, this computation appears in traditional probabilistic reasoning engines
such as the PrAE23. Supplementary Table IV shows the relation between our NVSA backend and the PrAE backend23 for
computing the probabilities for different rules. Our NVSA backend derives the rule probability based on the similarity between
vectors of fixed dimension, while the PrAE computes the rule probability by marginalizing all possible rule implementations.

For interpreting the similarity in equation (22) as a probability, we limit the range of the similarity using a threshold function,
which sets all similarity values below 0.05 to 0. This suppresses noise stemming from invalid contributions.

Some of the rules need to satisfy additional constraints to be valid. For the arithmetic plus, the sum of the attributes of the first
two panels (k1 +k2) has to be smaller than n. By computing sim(r+i ,a

(i,3)) for i ∈ {1,2}, this constraint is embedded for the first
two rows. For validating the arithmetic rule in the last row, we compute the constraint

ha(a(3,1),a(3,2)) := min

(
n

∑
k=1

sim
(

a(3,1)�a(3,2),bk

)
,1

)
. (27)
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The constraint accumulates all projections of the binding of a(3,1) and a(3,2) (i.e., the addition) to the space spanned by B. The
min(·,1) guarantees the constraint to be 0≤ ha ≤ 1 such that it can be interpreted as a probability. If the majority of the binding
falls outside of the space, i.e., the addition is larger than n, the constraint is not satisfied, and its value will be close to zero.
Finally, the rule probability is determined as

u[arithmetic plus] = sim(r+1 ,a
(1,3)) · sim(r+2 ,a

(2,3)) ·ha(a(3,1),a(3,2)). (28)

If the rule is selected, it is executed by computing

â(3,3) = a(3,1)�a(3,2). (29)

The rule arithmetic minus is implemented analogously, where the row representation is computed using the unbinding opera-
tion:

r−i = a(i,1)~a(i,2), i ∈ {1,2}. (30)

b. Progression. The progression rule describes a positive or negative increment by one or two values along the panels;
hence, it is a continuous concept, too. We detect and execute the progression rules with different increments and decrements
individually. The RAVEN dataset applies the rules row-wise. We compute the rule probability for positive increments by
computing first the unbinding between adjacent panels

d+(i, j) = a(i, j+1)~a(i, j) (i, j) ∈ {(1,1),(1,2),(2,1),(2,2),(3,1)} (31)

as well as the unbinding between the left-most and right-most panel in the first two rows:

d++(i,0) = a(i,2)~a(i,0) i ∈ {1,2}. (32)

If the progression rule by an increment of n ∈ {1,2} is active, we expect the unbound vectors d+(i, j) and d++(i,0) to be similar to
the basis vectors that represent the values n and 2n (bn and b2

n):

u[progression-plus-n] =

(
∏
i, j

sim(d+(i, j),bn)

)
·

(
∏

i∈{1,2}
sim(d++(i,0),b2

n)

)
·hp(d(1,1)). (33)

The last term prevents us from confusing the progression rule with the constant rule, which can be interpreted as a progression
of zero, and is implemented as

hp(d+(1,1)) := (1− sim(d+(1,1),0)). (34)

It computes the similarity between a difference vector (d(1,1)) and the all-zero vector (0), which is represented with a vector
where each block has its non-zero element at index 0. Finally, the progression rule is executed by

â(3,3) = a(3,2)�bn. (35)

The implementation of the progression with decrement is analogous, where we compute the binding in reverse order, e.g.,

d−(i, j) = a(i, j)~a(i, j+1) (i, j) ∈ {(1,1),(1,2),(2,1),(2,2),(3,1)}. (36)

c. Distribute three. The distribute three rule relates to a discrete concept, hence we use fully random codewords. First, we
compute the row-wise binding of the PMF-vector representation of the first two rows

ri = a(i,1)�a(i,2)�a(i,3), i ∈ {1,2}. (37)

Similarly, we can compute the column representations by

c j = a(1, j)�a(2, j)�a(3, j), j ∈ {1,2}. (38)

If the distribute three rule applies, we expect both sim(r1,r2)� 0 and sim(c1,c2)� 0.
Hence, the rule probability is computed by

u[distribute three] = sim(c1,c2) · sim(r1,r2) ·hd(a(1,1),a(1,2)), ...,a(2,3)), (39)

where

hd(a(1,1),a(1,2)), ...,a(2,3)) := (1− sim(a(1,1),a(1,2)) · (1− sim(a(1,2),a(1,3)) · ... · (1− sim(a(3,1),a(3,2)) (40)

validates the constraint that panels are not equal within a row. If the rule is selected, it is executed by

â(3,3) = r1 ~
(

a(3,1)�a(3,2)
)
. (41)
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Supplementary Table IV: Relation of rule probability computation between PrAE23 and our NVSA backend.

Rule PrAE NVSA

Constant u =
2

∑
r=1

n

∑
v=1

3

∏
c=1

p(r,c)[v]+
n

∑
v=1

2

∏
c=1

p(3,c)[v] u = sim(a(1,1),a(1,2)) · sim(a(1,2),a(1,3)) · ... · sim(a(3,1),a(3,2))

Progression-
plus n

u =
2

∑
r=1

∑
v1,v2,v3

s.t.v1+n=v2
v2+n=v3

3

∏
c=1

p(r,c)[vc]+ ∑
v1,v2

s.t.v1+n=v2

2

∏
c=1

p(3,c)[vc] u =

(
∏
i, j

sim(d+(i, j),bn)

)
·

(
∏

i∈{1,2}
sim(d++(i,0),b2

n)

)
·hp(d(1,1))

Arithmetic-
plus

u =
2

∑
r=1

∑
v1,v2,v3

s.t.v1+v2=v3

3

∏
c=1

p(r,c)[vc] u = sim(r+1 ,a
(1,3)) · sim(r+2 ,a

(2,3)) ·ha(a(3,1),a(3,2))

Dist.three u = ∑
v(1,1),...,v(3,2)∈Id3

2

∏
r=1

3

∏
c=1

p(r,c)[v(r,c)]
2

∏
c=1

p(3,c)[v(3,c)] u = sim(c1,c2) · sim(r1,r2) ·hd(a(1,1),a(1,2)), ...,a(2,3))

d. Constant. The computation of the constant rule probability involves the row-wise similarities:

u[constant] = sim(a(1,1),a(1,2)) · sim(a(1,2),a(1,3)) · sim(a(2,1),a(2,2)) · sim(a(2,2),a(2,3)) · sim(a(3,1),a(3,2)). (42)

The execution of the constant rule requires no transformation; thus, there is no need to map the PMF to the vector space and
back. Therefore, the PMF of the missing panel can be directly estimated by using one of the PMFs in the bottom row, e.g.,

p̂(3,3) = p(3,1). (43)

Selection of the rule and the final answer

For each attribute, we compute the rule probability of all rules using the NVSA backend. In the RAVEN dataset, the arith-
metic and progression rules on the position attribute are implemented in the binary system; thus, we compute the rule probability
computation in the original PMF space for those rules. For every attribute, we select the rule with the highest rule proba-
bility and apply it to get P̂(3,3) := (p̂pos, p̂num, p̂type, p̂size, p̂color). Finally, we compute for each candidate answer panel j, the
Jensen–Shannon divergence (JSD) between each of the five probability distributions in P(k) and P̂(3,3), and sum the five JSD
values to obtain a score for the answer panel j. The predicted answer panel j? is the one with the lowest total divergence.
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Supplementary Note 4: Out-Of-Distribution generalization to unseen attribute-rule pairs

In this Supplementary Note, we evaluate the generalizability of our NVSA, including both frontend and backend, for to unseen
attribute-rule pairs. More specifically, we evaluate whether our model is able to solve an unseen target attribute-rule pair (e.g.,
the constant rule on the type attribute) when it has been trained on the examples containing all of the attribute-rule pairs except
the specific target one (e.g., the constant rule on size and color, the progression rule on all attributes, and the distribute rule on
all attributes). Hence, this setting tests the out-of-distribution generalization for the attribute-rule pairs. To do so, we generate a
new training and validation set containing all examples except those with the target attribute-rule pair and a test set containing
examples exclusively with the target attribute-rule pair. The datasets are generated by filtering the existing splits in RAVEN and
I-RAVEN. As a result, the sets contain fewer samples depending on the target attribute-rule pair; specifically, the training sets
contain 2622–3437 samples, the validation sets 841–1160 samples, and the test sets 803–1117.

Supplementary Table V shows the experimental results on I-RAVEN in the L-R constellation. The results of LEN5 and
CoPINet6 are based on experiments conducted by Wu et al.44. Our NVSA was trained end-to-end and outperformed both
baselines by a large margin in all target attribute-rule pairs. Minor accuracy degradations are observed in the continuous rules
(i.e., progression and arithmetic). This might point out the importance of the continuous rules being present for the NVSA to
learn all attribute values properly.

Supplementary Table V: Out-Of-Distribution generalization on the unseen rule-attribute pairs of the I-RAVEN dataset in the
L-R constellation. We report accuracy (%) on test set that contains exclusively examples with the target attribute-value pairs on

which it has not been trained on.

Type Size Color

Constant Progress. Dist.3 Constant Progress. Dist.3 Arithmetic Constant Progress. Dist.3 Arithmetic

LEN5 28.0 24.0 29.4 24.4 27.9 27.6 - 25.3 25.3 22.0 -
CoPINet6 25.1 36.2 32.9 37.2 36.2 36.4 - 38.8 35.8 29.2 -
NVSA 100 81.8 100 100 100 100 77.8 99.9 81.7 100 80.9
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Supplementary Note 5: Experiments on the PGM dataset

This section describes the application of our NVSA to the Procedurally Generated Matrices (PGM) dataset58.

PGM Dataset

The PGM dataset provides RPM tests with two constellations, line and shape, which can simultaneously be present in a panel.
The objects in the shape constellation are arranged in a 3x3 grid, each taking one out of ten gray shadings, ten sizes, and seven
geometrical types (see Supplementary Table VI). Moreover, the line constellation contains six different line types, each taking
one out of ten gray shadings. Both constellations can have no objects present in a panel.

Each PGM example has 1 to 4 active rules, either applied row-wise or column-wise. This contrasts the RAVEN dataset, where
only a row-wise rule governs every attribute. The rules can be described as follows:

• Progression: The attribute value monotonically increases by a value of one in a row/column.

• XOR, OR, and AND: The set of attribute values in the third panel in a row/column corresponds to the logical XOR, OR, or
AND operation of the first two panels. Let us consider an example with the attribute type in the shape constellation. The
first panel contains objects with squares and triangles and the second only triangles. Consequently, the third panel would
either contain only squares (XOR), both squares and triangles (OR), or only triangles (AND).

• Consistent union: The same set of attribute values appear in the three panels of every row/column (with permuta-
tions of the values in different rows/columns). This is a relaxed version of the distribute three rule in the RAVEN
dataset since it does not require all the permutations to be distinct.

Supplementary Table VI summarizes the attribute rules of the two constellations. The PGM dataset contains 1,200,000
examples for training, 20,000 for validation, and 200,000 for testing. Moreover, the active rules are provided as meta-labels.
Note that the meta-labels do not contain the orientation of the rule (i.e., row-wise or column-wise).

NVSA frontend

We start by defining the codebooks for the two constellations. The line constellation has two codebooks, TL := {ti}6
i=1 for type

and CL := {ci}10
i=1 for color. Similarly, the codebooks for the shape constellation are TS := {ti}7

i=1, SS := {si}10
i=1, CS := {cS

i }10
i=1,

and LS := {li}9
i=1 representing the type, size, color, and position of a single object. We build the dictionaries WL ∈ {−1,+1}mL×d

and WS ∈ {−1,+1}mS×d by binding the vectors from the codebooks of all possible combinations for line and shape. This yields
mS=6300 combinations for the shape and mL=60 combinations for the line.

In our earlier NVSA frontend using one ResNet-18, we identified a limitation in the end-to-end training with multiple at-
tributes, where in most cases, only one attribute was learned, and the others remained at random chance. The limitation might
stem from the larger number of attribute combinations in PGM: the shapes in PGM have > 2× more attribute combinations
than the largest 3x3 grid constellation in RAVEN (6300 vs. 2700). To simplify the end-to-end training, we train four ResNet-18
models, each focusing on two attributes: one for the line constellation (type-color attributes) and three for the shape constel-
lation (type-position, size-position, color-position). We intentionally included the position attribute for every attribute since it
influences the scene probability computation of the other attributes (e.g., see equation (17) in Methods). Moreover, we use a
larger dimension d = 1024 for better performance.

Probabilistic scene representation

For every panel, we compute a PMF for each object (e.g., v(k)exist, v(k)type, v(k)size, v(k)color for object k in the shape constellation)
using the marginalization with consecutive softmax approach (see equation (12)–(14) in Methods). We then derive the PMFs
representing the attributes of the panel. Here, most attribute-rule pairs use the same computation of the panel PMF as in RAVEN.
The exceptions are the logical rules (XOR, OR, and AND) on color, size, and type, where we need to describe every attribute value
combination separately. More specifically, we describe the occupancy with the set of occupied values I j; e.g., I3 = {1,2}
represents a scene with at least one object with attribute value 1 and at least one with attribute value 2. The probability that a
panel contains the attributes a with values in I j is determined by

p′a[ j] = ∏
k∈I j

min

(
n

∑
l=1

v(l)exist[0]v
(l)
a [k],1

)
, (44)
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Supplementary Table VI: Summary of attributes and rules in the PGM dataset.

Constellation Attribute name Number of
attribute values Rules

Shapes Color 10 Progression, XOR, OR, AND, consistent union
Size 10 Progression, XOR, OR, AND, consistent union
Number 10 Progression, consistent union
Position 9 XOR, OR, AND
Type 7 XOR, OR, AND, consistent union

Line Color 10 Progression, XOR, OR, AND, consistent union
Type 6 XOR, OR, AND, consistent union

where n is the number of positions in the scene (n=6 for line and n=9 for shape), v(l)exist the probability that an object exists at

position l, and v(l)a [k] the probability that the object at position l has attribute a with value k. We limit the set I j to contain at
most four different values to keep the compute and memory demands low. Overall, we get a scene representation for the line,
PL := {ppos,pcolor,p′color}, and for the shape constellation, PS := {ppos,pnum,ptype,p′type,psize,p′size,pcolor,p′color}. Note that the
attributes color, type, and size now have two scene representations: the standard PMF pa (see equation (17) in Methods) and the
novel extended p′a (see equation (44)). As opposed to the RAVEN dataset, an inconsistency state is not required for the PGM
dataset.

NVSA backend

Here, we describe the rule probability computation and execution for the PGM dataset. Similar to NVSA’s application to the
RAVEN dataset, the progression rule is implemented with VSA-enhanced vector operations. Moreover, the consistent
union rule implementation benefits from the VSA-enabled computation-in-superposition, similar to the distribute
three rule in RAVEN. The logical rules (XOR, OR, and AND) are simple logical operations that can be implemented more
efficiently in the original low-dimensional PMF space. We compute the rule probability along the rows and columns and execute
it accordingly. In the following, we describe the row-wise implementation; the column-wise implementation is done by feeding
the transposed context matrix to the NVSA backend.

a. Progression. The progression rule’s probability computation and execution are implemented as described in equa-
tion (33) and equation (35), respectively, where only the increment by one value is detected and executed in this case.

b. Consistent union. The consistent union rule relates to a discrete concept; hence, we use random codewords. First, we
compute the row-wise binding of the PMF-vector representation of the first two rows:

ri = a(i,1)�a(i,2)�a(i,3), i ∈ {1,2}. (45)

The rule probability is computed by

u[consistent union] = sim(r1,r2) ·hc.u.(a(1,1),a(1,2), ...,a(2,3)), (46)

where

hc.u.(a(1,1),a(1,2), ...,a(2,3)) :=

(
∏

i∈{1,2}
∏

j∈{1,2}
(1− sim(a(i, j),a(i, j+1))

)
· (1− sim(a(3,1),a(3,2)) (47)

validates the constraint that panels are not equal within a row. If the rule is selected, it is executed by

â(3,3) = r1 ~
(

a(3,1)�a(3,2)
)
. (48)

c. XOR, OR, and AND. The rule probability of the logical rules is computed in the original PMF space by summing up all
possible rule implementations. For example, the rule probability for the XOR rule is determined by:

u[XOR] =

 2

∑
r=1

∑
v1,v2,v3

s.t.1XOR(v1,v2,v3)

3

∏
c=1

p(r,c)[vc]

+ ∑
v1,v2

2

∏
c=1

p(3,c)[vc], (49)
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Supplementary Table VII: End-to-end accuracy (%) on the neutral split of the PGM test set. The upper part shows the results
reported in the literature. In the lower part, we report the average accuracy ± the standard deviation over five runs with

different seeds for our NVSA and the reproduced baselines.

Method Accuracy

CNN+MLP58 33.0
LSTM58 35.8
Resnet-5058 42.0
Wild-ResNet58 48.0
CoPINet6 56.4
WReN58 62.8
LEN5 88.9
SCL44 88.9
MRNet10 93.4

PrAE23 N/A?

LEN5 N/A†

SCL44 N/A†

MRNet10 68.34±4.73
NVSA (end-to-end tr.) 68.30±4.93

* PrAE only applied to RAVEN.
† No code for PGM available on the

code repositories.

where 1XOR(v1,v2,v3) indicates the correctness of the XOR rule within a row/column given the indices v1, v2, and v3. Similarly,
the rule probability for OR and AND are determined with the corresponding indication function. For executing the rule, we
marginalize all combinations in the last row, i.e.,

p̂(3,3)[v] = ∑
v1,v2

s.t.1XOR(v1,v2,v)

2

∏
c=1

p(3,c)[vc]. (50)

Selection of the final answer

For every attribute, we execute the rule with the highest probability yielding the estimated PMFs for the line and shape
constellation: P̂ := {P̂L, P̂S}. Finally, we compute the score of every candidate answer panel i by summing up the JSD of the
individual attributes:

s(P(i), P̂) =−∑
a

wa · JSD(p(i)
a , p̂a), (51)

where wa weights the contribution of the attribute a. In the RAVEN dataset, all the attributes equally contribute to the final
score (i.e., wa = 1, ∀a). In contrast, in the PGM dataset, only 1 to 4 attributes have an active rule. Hence, we use a learnable
small-sized multi-layer perceptron (MLP) which predicts the set of active attributes given the rule probabilities and the JSD
errors. More concretely, the MLP takes the concatenation of all rule probabilities, their maximizing values, and the JSD errors
as input and predicts the values wa. The MLP contains one hidden layer with a dimension of 75 and a ReLU activation, and a
sigmoid activation at the output. The MLP is learned by optimizing the binary cross-entropy loss between the predicted attribute
weights and the ground-truth values, which are derived from the auxiliary attribute rules.

Training details

We train each perception frontend separately with training data containing examples with the corresponding attribute rules.
For example, for training the frontend corresponding to the position and type in the shape constellation, we filter the training set
such that it contains either rules with attribute position or type. For improved training, we restrict the training samples to have
only one rule. This yields around 314,000 examples for training the type-color frontend for the line constellation and 146,000
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examples for each shape constellation frontend (position-color, position-type, and position-size). The models are trained and
validated on a Linux machine using an NVIDIA Tesla A100 GPU.

Similar to our approach on RAVEN, we optimize the REINFORCE loss, which is augmented with an auxiliary loss (see
equation (19) in Methods), where only attributes with active rules contribute to the loss (provided by meta-labels). We train the
shape-related frontends for 45 epochs and the line-related one for 25 epochs using the Adam optimizer with weight decay 10−4,
a constant learning rate of 9.5×10−5, and batchsize of 16.

After the NVSA training, the attribute selection MLP is learned on a randomly selected subset of the complete training data
(i.e., no rule-based filtering), which turned out to be sufficient to the large dataset size. We train the MLP for 50 epochs using
a batchsize of 64 and a learning rate of 0.01, where we randomly select only 128 batches in each epoch (0.68% of the entire
dataset).

Experimental results

Supplementary Table VII compares the end-to-end accuracy of our NVSA with various baselines. The upper part of the
table shows the accuracy reported in the literature, where the highly accurate methods are LEN5 (88.9%), SCL44 (88.9%), and
MRNet10 (93.4%). The lower part of the table compares the accuracy of the reproduced methods with our NVSA. PrAE23 was
only developed for the RAVEN dataset; hence, it could not be easily applied to the PGM dataset. Similarly, the open-sourced
code of LEN5 and SCL44 can only be applied to RAVEN, even though PGM results are reported in the corresponding works.
Finally, MRNet10, the current state-of-the-art method on PGM, provides code for this dataset. However, training the architectures
from scratch with randomly initialized weights with different seeds yielded significantly lower accuracy than the one reported in
their paper (68.3% vs. 93.4%), despite optimizing the weight decay for better training. Our NVSA achieves an average accuracy
of 68.3%, being competitively with the reproduced MRNet.
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